Increasing The Genetic Admixture of Available Lines of Human Pluripotent Stem Cells

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
TOFOLI, Fabiano A.
DASSO, Maximiliano
MORATO-MARQUES, Mariana
NUNES, Kelly
PEREIRA, Lucas Assis
SILVA, Giselle Siqueira da
FONSECA, Simone A. S.
COSTAS, Roberta Montero
Citação
SCIENTIFIC REPORTS, v.6, article ID 34699, 7p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Human pluripotent stem cells (hPSCs) may significantly improve drug development pipeline, serving as an in vitro system for the identification of novel leads, and for testing drug toxicity. Furthermore, these cells may be used to address the issue of differential drug response, a phenomenon greatly influenced by genetic factors. This application depends on the availability of hPSC lines from populations with diverse ancestries. So far, it has been reported that most lines of hPSCs derived worldwide are of European or East Asian ancestries. We have established 23 lines of hPSCs from Brazilian individuals, and we report the analysis of their genomic ancestry. We show that embryo-derived PSCs are mostly of European descent, while induced PSCs derived from participants of a national-wide Brazilian cohort study present high levels of admixed European, African and Native American genomic ancestry. Additionally, we use high density SNP data and estimate local ancestries, particularly those of CYP genes loci. Such information will be of key importance when interpreting variation among cell lines with respect to cellular phenotypes of interest. The availability of genetically admixed lines of hPSCs will be of relevance when setting up future in vitro studies of drug response.
Palavras-chave
Referências
  1. Alexander DH, 2009, GENOME RES, V19, P1655, DOI 10.1101/gr.094052.109
  2. Amps K, 2011, NAT BIOTECHNOL, V29, P1132, DOI 10.1038/nbt.2051
  3. Aquino E. M., 2012, AM J EPIDEMIOL, V4, P315
  4. Callegari-Jacques SM, 2003, AM J HUM BIOL, V15, P824, DOI 10.1002/ajhb.10217
  5. Cardena MMSG, 2014, INT J CARDIOL, V176, P527, DOI 10.1016/j.ijcard.2014.07.039
  6. Chang EA, 2015, SCI REP-UK, V5, DOI 10.1038/srep15234
  7. Cherry ABC, 2012, CELL, V148, P1110, DOI 10.1016/j.cell.2012.02.031
  8. Chou BK, 2011, CELL RES, V21, P518, DOI 10.1038/cr.2011.12
  9. Delaneau O, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4934
  10. Georges de Oliveira J. A., 2014, STEM CELL REV, V4, P472
  11. Dowey SN, 2012, NAT PROTOC, V7, P2013, DOI 10.1038/nprot.2012.121
  12. Fonseca S. A., 2015, WORLD J STEM CELLS, V3, P649
  13. Fraga A. M., 2011, CELL T, V3, P431
  14. Giolo SR, 2012, EUR J HUM GENET, V20, P111, DOI 10.1038/ejhg.2011.144
  15. Inoue H, 2014, EMBO J, V33, P409, DOI 10.1002/embj.201387098
  16. Ko HC, 2014, STEM CELL TRANSL MED, V3, P500, DOI 10.5966/sctm.2013-0162
  17. Laurent LC, 2010, NAT METHODS, V7, P6, DOI 10.1038/nmeth0110-06
  18. Laustriat D, 2010, BIOCHEM SOC T, V38, P1051, DOI 10.1042/BST0381051
  19. Lins TC, 2010, AM J HUM BIOL, V22, P187, DOI 10.1002/ajhb.20976
  20. Lotufo PA, 2015, J CLIN HYPERTENS, V17, P74, DOI 10.1111/jch.12433
  21. Maples BK, 2013, AM J HUM GENET, V93, P278, DOI 10.1016/j.ajhg.2013.06.020
  22. Mosher JT, 2010, NEW ENGL J MED, V362, P183, DOI 10.1056/NEJMc0910371
  23. Manta FSN, 2013, ANN HUM BIOL, V40, P94, DOI 10.3109/03014460.2012.742138
  24. Nunes K, 2016, HUM IMMUNOL, V77, P307, DOI 10.1016/j.humimm.2015.11.004
  25. Pena SDJ, 2009, BRAZ J MED BIOL RES, V42, P870, DOI 10.1590/S0100-879X2009005000026
  26. Pena S. D., 2011, PLOS ONE, V2
  27. Santos HC, 2016, EUR J HUM GENET, V24, P725, DOI 10.1038/ejhg.2015.187
  28. Schmidt MI, 2015, INT J EPIDEMIOL, V44, P68, DOI 10.1093/ije/dyu027
  29. Tsankov AM, 2015, NAT BIOTECHNOL, V33, P1182, DOI 10.1038/nbt.3387
  30. Weinshilboum R, 2003, NEW ENGL J MED, V348, P529
  31. Zanger UM, 2013, PHARMACOL THERAPEUT, V138, P103, DOI 10.1016/j.pharmthera.2012.12.007