GRN and MAPT Mutations in 2 Frontotemporal Dementia Research Centers in Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
GUIMARAES, Henrique C.
VALE, Thiago C.
MACHADO, Joao C. B.
BEATO, Rogerio G.
Citação
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, v.30, n.4, p.310-317, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Mutations in GRN (progranulin) and MAPT (microtubule-associated protein tau) are among the most frequent causes of monogenic frontotemporal dementia (FTD), but data on the frequency of these mutations in regions such as Latin America are still lacking. Objective: We aimed to investigate the frequencies of GRN and MAPT mutations in FTD cohorts from 2 Brazilian dementia research centers, the University of Sao Paulo and the Federal University of Minas Gerais medical schools. Methods: We included 76 probands diagnosed with behavioral-variant FTD (n = 55), semantic-variant Primary Progressive Aphasia (PPA) (n = 11), or nonfluent-variant PPA (n = 10). Twenty-five percent of the cohort had at least 1 relative affected with FTD. Results: Mutations in GRN were identified in 7 probands, and in MAPT, in 2 probands. We identified 3 novel GRN mutations (p.Q130X, p.317Afs*12, and p.K259Afs*23) in patients diagnosed with nonfluent-variant PPA or behavioral-variant FTD. Plasma progranulin levels were measured and a cutoff value of 70 ng/mL was found, with 100% sensitivity and specificity to detect null GRN mutations. Conclusions: The frequency of GRN mutations was 9.6% and that of MAPT mutations was 7.1%. Among familial cases of FTD, the frequency of GRN mutations was 31.5% and that of MAPT mutations was 10.5%.
Palavras-chave
frontotemporal dementia, primary progressive aphasia, progranulin, tau, genetics
Referências
  1. Almeida Maria Rosario, 2014, Neurodegener Dis, V13, P214, DOI 10.1159/000352022
  2. Beck J, 2008, BRAIN, V131, P706, DOI 10.1093/brain/awm320
  3. Benussi L, 2010, ALZ DIS ASSOC DIS, V24, P308, DOI 10.1097/WAD.0b013e3181d1bb13
  4. Bernardi L, 2012, NEUROBIOL AGING, V33, DOI 10.1016/j.neurobiolaging.2012.06.017
  5. Brucki SMD, 2003, ARQ NEURO-PSIQUIAT, V61, P777, DOI 10.1590/S0004-282X2003000500014
  6. Chen-Plotkin AS, 2011, ARCH NEUROL-CHICAGO, V68, P488, DOI 10.1001/archneurol.2011.53
  7. Chiang HH, 2013, EUR J HUM GENET, V21, P1260, DOI 10.1038/ejhg.2013.37
  8. Costa TVMM, 2012, THESIS
  9. Cruts M, 2012, HUM MUTAT, V33, P1340, DOI 10.1002/humu.22117
  10. Das G, 2013, PARKINSONISM RELAT D, V19, P487, DOI 10.1016/j.parkreldis.2012.11.015
  11. DeJesus-Hernandez M, 2011, NEURON, V72, P245, DOI 10.1016/j.neuron.2011.09.011
  12. Finch N, 2009, BRAIN, V132, P583, DOI 10.1093/brain/awn352
  13. Forbes SA, 2015, NUCLEIC ACIDS RES, V43, pD805, DOI 10.1093/nar/gku1075
  14. Gass J, 2006, HUM MOL GENET, V15, P2988, DOI 10.1093/hmg/ddl241
  15. Ghidoni R, 2012, NEURODEGENER DIS, V9, P121, DOI 10.1159/000333132
  16. Goldman JS, 2005, NEUROLOGY, V65, P1817, DOI 10.1212/01.wnl.0000187068.92184.63
  17. Gorno-Tempini ML, 2011, NEUROLOGY, V76, P1006, DOI 10.1212/WNL.0b013e31821103e6
  18. Guerreiro RJ, 2008, MOVEMENT DISORD, V23, P1269, DOI 10.1002/mds.22078
  19. Hu J, 2012, GENOME BIOL, V13, DOI 10.1186/gb-2012-13-2-r9
  20. Kelley BJ, 2009, NEUROBIOL AGING, V30, P739, DOI 10.1016/j.neurobiolaging.2007.08.022
  21. Kim EJ, 2014, NEUROBIOL AGING, V35, DOI 10.1016/j.neurobiolaging.2013.11.033
  22. Larner AJ, 2009, J NEUROL SCI, V287, P253, DOI 10.1016/j.jns.2009.08.063
  23. Le Ber I, 2008, BRAIN, V131, P732, DOI 10.1093/brain/awn012
  24. Le Ber I, 2013, J ALZHEIMERS DIS, V34, P485, DOI 10.3233/JAD-121456
  25. Mackenzie IRA, 2011, ACTA NEUROPATHOL, V122, P111, DOI 10.1007/s00401-011-0845-8
  26. Masellis M, 2006, BRAIN, V129, P3115, DOI 10.1093/brain/awl276
  27. Mesulam MM, 2014, NAT REV NEUROL, V10, P554, DOI 10.1038/nrneurol.2014.159
  28. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  29. Nicholson AM, 2014, NEUROLOGY, V82, P1871, DOI 10.1212/WNL.0000000000000445
  30. Ogaki K, 2013, PARKINSONISM RELAT D, V19, P15, DOI 10.1016/j.parkreldis.2012.06.019
  31. Piscopo P, 2013, J ALZHEIMERS DIS, V35, P313, DOI 10.3233/JAD-121606
  32. Poorkaj P, 2001, ARCH NEUROL-CHICAGO, V58, P383, DOI 10.1001/archneur.58.3.383
  33. Rademakers R, 2007, LANCET NEUROL, V6, P857, DOI 10.1016/S14744422(07)70221-1
  34. Rascovsky K, 2011, BRAIN, V134, P2456, DOI 10.1093/brain/awr179
  35. Rohrer JD, 2009, NEUROLOGY, V73, P1451, DOI 10.1212/WNL.0b013e3181bf997a
  36. Seelaar H, 2008, NEUROLOGY, V71, P1220, DOI 10.1212/01.wnl.0000319702.37497.72
  37. Soliveri P, 2003, ARCH NEUROL-CHICAGO, V60, P1454, DOI 10.1001/archneur.60.10.1454
  38. Tsuboi Y, 2002, NEUROLOGY, V59, P1791
  39. Van Deerlin VM, 2007, ARCH NEUROL-CHICAGO, V64, P1148, DOI 10.1001/archneur.64.8.1148
  40. Van Langenhove T, 2013, JAMA NEUROL, V70, P365, DOI 10.1001/2013.jamaneurol.181