The Effect of Mechanical Varus on Anterior Cruciate Ligament and Lateral Collateral Ligament Stress: Finite Element Analyses

Carregando...
Imagem de Miniatura
Citações na Scopus
27
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
SLACK INC
Citação
ORTHOPEDICS, v.39, n.4, p.E729-E736, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The current study analyzed changes in anterior cruciate ligament (ACL) and lateral collateral ligament stress as a result of mechanical varus. In an exploratory pilot study, progressive mechanical varus was introduced to a male finite element model of the lower limb at different knee flexion angles. Nine situations were analyzed (combinations of 0 degrees, 30 degrees, and 60 degrees knee flexion and 0 degrees, 5 degrees, and 10 degrees varus). The ACL stress was measured via changes in section force, von Mises stress, and fiber stress. Lateral collateral ligament stress was measured via changes in section force. For all 3 measures of the ACL, maximum stress values were found in extension, stress decreased with flexion, and the effect of varus introduction was most significant at 30 degrees flexion. With 60 degrees flexion, varus introduction produced a decrease in section force and von Mises stress and a small increase in fiber stress. In all situations and stress measures except fiber stress at 60 degrees flexion, stress was concentrated at the posterolateral bundle. For the lateral collateral ligament, the introduction of 5 degrees and 10 degrees varus caused an increase in section force at all degrees of flexion. Stress in the ligament decreased with flexion. Mechanical varus of less than 10 degrees was responsible for increased ACL stress, particularly at 0 degrees and 30 degrees knee flexion, and for increased lateral collateral ligament stress at all degrees of flexion. Stress was mostly concentrated on the posterolateral bundle of the ACL.
Palavras-chave
Referências
  1. Azmy C, 2010, ORTHOP TRAUMATOL-SUR, V96, P27, DOI [10.1016/j.rcot.2009.12.003, 10.1016/j.otsr.2009.10.013]
  2. Bendjaballah MZ, 1997, CLIN BIOMECH, V12, P139, DOI 10.1016/S0268-0033(97)00072-7
  3. Besier TF, 2005, MED SCI SPORT EXER, V37, P1924, DOI 10.1249/01.mss.0000176686.18683.64
  4. Chaudhari AM, 2006, J BIOMECH, V39, P330, DOI 10.1016/j.jbiomech.2004.11.013
  5. Donahue TLH, 2002, J BIOMECH ENG-T ASME, V124, P273, DOI 10.1115/1.1470171
  6. ESI Group, 2013, VPS PERF SOL 2013 SO
  7. Favre P, 2010, J BIOMECH, V43, P1931, DOI 10.1016/j.jbiomech.2010.03.018
  8. Fernandez JW, 2006, EXP PHYSIOL, V91, P371, DOI 10.1113/expphysiol.2005.031047
  9. FITHIAN DC, 1990, CLIN ORTHOP RELAT R, P19
  10. Fleming BC, 2001, J BIOMECH, V34, P163, DOI 10.1016/S0021-9290(00)00154-8
  11. Fung YC, 1981, BIOMECHANICS
  12. Gadikota HR, 2011, INT ORTHOP, V35, P1403, DOI 10.1007/s00264-010-1118-1
  13. Geais L., 2011, THESIS
  14. Herrera Antonio, 2012, World J Orthop, V3, P25, DOI 10.5312/wjo.v3.i4.25
  15. Homyk A, 2012, COMPUT METHOD BIOMEC, V15, P865, DOI 10.1080/10255842.2011.565412
  16. JOHNSON GA, 1994, J ORTHOPAED RES, V12, P796, DOI 10.1002/jor.1100120607
  17. Kim SJ, 2005, ARTHROSCOPY, V21, P286, DOI 10.1016/j.arthro.2004.11.004
  18. Kim SJ, 2011, J BONE JOINT SURG AM, V93A, P2010, DOI 10.2106/JBJS.J.01868
  19. LaPrade RF, 2003, AM J SPORT MED, V31, P854
  20. LaPrade RF, 1999, AM J SPORT MED, V27, P469
  21. LaPrade RF, 2012, INSALL SCOTT SURG KN, P356
  22. LaPrade RF, 2008, J BONE JOINT SURG AM, V90A, P2069, DOI 10.2106/JBJS.G.00979
  23. LaPrade RF, 2011, J BONE JOINT SURG AM, V93A, P10, DOI 10.2106/JBJS.J.01243
  24. Li G, 2002, ANN BIOMED ENG, V30, P713, DOI 10.1114/1.1484219
  25. Liu J, 2012, BIOMECH MODEL MECHAN, V11, P35, DOI 10.1007/s10237-011-0291-5
  26. Livesay GA, 1997, J ORTHOPAED RES, V15, P278, DOI 10.1002/jor.1100150218
  27. Long WJ, 2012, INSALL SCOTT SURG KN
  28. MARKOLF KL, 1990, J BONE JOINT SURG AM, V72A, P557
  29. Marouane H, 2015, COMPUT METHOD BIOMEC, V18, P339, DOI 10.1080/10255842.2013.795555
  30. Meister BR, 2000, AM J SPORT MED, V28, P869
  31. NOYES FR, 1992, AM J SPORT MED, V20, P707, DOI 10.1177/036354659202000612
  32. Park JB, 2007, BIOMATERIALS
  33. Penrose J M T, 2002, Comput Methods Biomech Biomed Engin, V5, P291, DOI 10.1080/1025584021000009724
  34. Piazza SJ, 2000, J BIOMECH, V33, P1029, DOI 10.1016/S0021-9290(00)00056-7
  35. Ranawat A, 2008, J AM ACAD ORTHOP SUR, V16, P506
  36. Ravary B, 2004, CLIN BIOMECH, V19, P433, DOI 10.1016/j.clinbiomech.2004.01.008
  37. Robinson JR, 2005, J BIOMECH, V38, P1067, DOI 10.1016/j.jbiomech.2004.05.034
  38. Seifzadeh A, 2012, CLIN BIOMECH, V27, P852, DOI 10.1016/j.clinbiomech.2012.04.005
  39. Sugita T, 2001, AM J SPORT MED, V29, P466
  40. van Lenthe GH, 2006, BONE, V39, P1182, DOI 10.1016/j.bone.2006.06.033
  41. Viano DC, 1986, 861923 SAE INT
  42. Vincent JFV, 1990, STRUCTURAL BIOMATERI
  43. WOO SLY, 1991, AM J SPORT MED, V19, P217, DOI 10.1177/036354659101900303
  44. Xie F, 2009, J BIOMECH ENG-T ASME, V131, DOI 10.1115/1.4000167
  45. Yang NH, 2010, COMPUT METHOD BIOMEC, V13, P589, DOI 10.1080/10255840903389989
  46. Zhong Yan-Lin, 2011, Chin J Traumatol, V14, P79