The biomechanical effects of graft rotation on ACL reconstruction tunnel mismatch

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, v.25, n.4, p.1255-1263, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Bone block protrusion out of the tibial tunnel due to a relatively long graft is a common complication in anterior cruciate ligament surgical reconstruction with a patellar tendon. One possible solution is to shorten the patellar tendon graft already fixed in the femur by applying external rotation. This study aimed to evaluate the degree of shortening and biomechanical changes in porcine patellar grafts subjected to relatively higher degrees of rotation. Data obtained with rotations of 0A degrees, 540A degrees, 720A degrees, and 900A degrees were compared. Forty patellar porcine ligaments were subjected to biomechanical tests of degree of shortening, modulus of elasticity and maximum tension in the tendon before rupture. Tests were conducted using a universal mechanical testing machine and a computerized system for acquiring strength and deformation data. Progressive shortening of the patellar ligament occurred with rotations of 0A degrees, 540A degrees and 720A degrees. However, the degree of shortening showed no statistically significant difference as rotation increased from 720A degrees to 900A degrees. Decreased modulus of elasticity was observed compared with the graft rotation at 0A degrees in all groups tested, but no statistically significant differences were observed among 540A degrees, 720A degrees and 900A degrees. The maximum tension of the patellar tendon showed no change before rupture, regardless of the degree of rotation. Rotating the patellar tendon is an efficient method for shortening a relatively long graft; however, more biomechanical studies are necessary to recommend this technique in clinical practice owing to the resulting decrease in graft stiffness that could compromise knee stability.
Palavras-chave
ACL reconstruction, Tunnel mismatch, Rotational stability, Patellar tendon, Graft rotation
Referências
  1. Aerssens J, 1998, ENDOCRINOLOGY, V139, P663, DOI 10.1210/en.139.2.663
  2. Auge WK, 1999, ARTHROSCOPY, V15, P877, DOI 10.1053/ar.1999.v15.0150871
  3. Barber FA, 2000, ARTHROSCOPY, V16, P483, DOI 10.1053/jars.2000.4384
  4. Berkson E, 2006, AM J SPORT MED, V34, P1442, DOI 10.1177/0363546506287741
  5. Boddu CK, 2015, BONE JOINT J, V97B, P324, DOI 10.1302/0301-620X.97B3.34653
  6. Brown JA, 2007, AM J SPORT MED, V35, P986, DOI 10.1177/0363546506298584
  7. Butler D L, 1987, Instr Course Lect, V36, P173
  8. Camarda L, 2014, KNEE SURG SPORT TR A, V22, P1040, DOI 10.1007/s00167-013-2449-4
  9. Cooper DE, 1998, KNEE SURG SPORT TR A, V6, P16
  10. Cunningham R, 2002, ARTHROSCOPY, V18, P983, DOI 10.1053/jars.2002.36102
  11. Denti M, 1998, Knee Surg Sports Traumatol Arthrosc, V6, P165, DOI 10.1007/s001670050093
  12. Diduch D R, 1998, Am J Knee Surg, V11, P15
  13. Figueroa D, 2010, KNEE, V17, P245, DOI 10.1016/j.knee.2009.08.005
  14. Fowler BL, 1998, ARTHROSCOPY, V14, P224, DOI 10.1016/S0749-8063(98)70046-5
  15. Goldstein JL, 2010, ARTHROSCOPY, V26, P643, DOI 10.1016/j.arthro.2009.09.012
  16. Grawe Brian, 2014, Arthrosc Tech, V3, pe417, DOI 10.1016/j.eats.2014.04.003
  17. Kato Y, 2013, KNEE SURG SPORT TR A, V21, P816, DOI 10.1007/s00167-012-1951-4
  18. KENNEDY JC, 1974, J BONE JOINT SURG AM, VA 56, P223
  19. Kirwan GW, 2013, ARTHROSCOPY, V29, P934, DOI 10.1016/j.arthro.2013.01.021
  20. Kousa P, 2001, AM J SPORT MED, V29, P420
  21. KUROSAKA M, 1987, AM J SPORT MED, V15, P225, DOI 10.1177/036354658701500306
  22. Kyung HS, 2001, INT ORTHOP, V25, P100, DOI 10.1007/s002640100222
  23. Morrison J B, 1969, Biomed Eng, V4, P573
  24. MORRISON JB, 1970, J BIOMECH, V3, P51, DOI 10.1016/0021-9290(70)90050-3
  25. MUNNS SW, 1994, ARTHROSCOPY, V10, P404, DOI 10.1016/S0749-8063(05)80191-4
  26. Nagarkatti DG, 2001, AM J SPORT MED, V29, P67
  27. Norwood L A, 1979, Am J Sports Med, V7, P23, DOI 10.1177/036354657900700106
  28. Novak PJ, 1996, ARTHROSCOPY, V12, P470, DOI 10.1016/S0749-8063(96)90042-0
  29. Samuelson TS, 1996, AM J SPORT MED, V24, P67, DOI 10.1177/036354659602400112
  30. Schoderbek RJ, 2007, CLIN SPORT MED, V26, P525, DOI 10.1016/j.csm.2007.06.006
  31. SHAFFER B, 1993, ARTHROSCOPY, V9, P633, DOI 10.1016/S0749-8063(05)80499-2
  32. SPINDLER KP, 1993, ORTHOPEDICS, V16, P425
  33. Spindler KR, 2004, AM J SPORT MED, V32, P1986, DOI 10.1177/0363546504271211
  34. Suzuki T, 2014, ARTHROSCOPY, V30, P1294, DOI 10.1016/j.arthro.2014.05.027
  35. Taylor DE, 1996, ARTHROSCOPY, V12, P513, DOI 10.1016/S0749-8063(96)90054-7
  36. Tomita F, 2001, ARTHROSCOPY, V17, P461, DOI 10.1053/jars.2001.24059
  37. Verma N, 2003, AM J SPORT MED, V31, P708
  38. Verma Nikhil N, 2005, J Knee Surg, V18, P183
  39. WIRTH CJ, 1990, AM J SPORT MED, V18, P154, DOI 10.1177/036354659001800208
  40. Zaffagnini S, 2014, AM J SPORT MED, V42, P708, DOI 10.1177/0363546513519070