The role of titanium dioxide in the gut

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
EMERALD GROUP PUBLISHING LTD
Autores
ACHTSCHIN, Cassiana Ganem
Citação
NUTRITION & FOOD SCIENCE, v.47, n.3, p.432-442, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose -Titanium is a naturally occurring mineral in the form of titanium dioxide (TiO2) and is one of the most widely used food additives. The purpose of this review article is to show the importance of the accumulation of this mineral in the gut and its relation with inflammatory processes. Methodology - This is a literature review study from 2002 to 2016, focusing on studies with TiO2 and its relation with inflammatory bowel diseases. Findings -Articles describe that TiO2 is resistant to gastrointestinal degradation, as it has high stability, and that its particles, ingested daily, may bind to biomolecules in the lumen or be absorbed by the intestinal mucosa, accumulating in the macrophages of lymphoid tissue in the gut, thus causing or aggravating the inflammatory response in the inflamed bowel. Limitations/implications -There is a limited number of studies on the long-term impact of dietary microparticles in animal models, in healthy subjects and in patients with inflammatory bowel diseases. Practical implications -It is necessary to regulate the amount of TiO2 used in industrialized products. Social implications - The high consumption of processed foods, as opposed to a healthy diet based on the balanced consumption of nutrients, is relevant, as it may lead to or exacerbate intestinal inflammation. Originality/value - This review indicates that titanium particles may mediate toxicological processes leading to an abnormal increase in intestinal permeability, which may be particularly aggravating in patients with inflammatory bowel diseases.
Palavras-chave
Particles, Inflammation, Intestine, Titanium dioxide
Referências
  1. Aijaz S, 2006, INT REV CYTOL, V248, P261, DOI 10.1016/S0074-7696(06)48005-0
  2. Allouni ZE, 2012, TOXICOL IN VITRO, V26, P469, DOI 10.1016/j.tiv.2012.01.019
  3. Ashwood P, 2007, EXP BIOL MED, V232, P107
  4. Becker HM, 2012, DIGEST DIS, V30, P47, DOI 10.1159/000342602
  5. Bergin I. L., 2013, J BIOMEDICAL NANOSCI, V3, P1
  6. Bu Q, 2010, NANOTECHNOLOGY, V21, DOI 10.1088/0957-4484/21/12/125105
  7. Butler M, 2007, INFLAMM RES, V56, P353, DOI 10.1007/s00011-007-7068-4
  8. Buzea C, 2007, BIOINTERPHASES, V2, pMR17, DOI 10.1116/1.2815690
  9. Chia SL, 2015, SMALL, V11, P702, DOI 10.1002/smll.201401915
  10. Cho WS, 2013, PART FIBRE TOXICOL, V10, DOI 10.1186/1743-8977-10-9
  11. Delaney J, 2004, BIOMARKERS, V9, P271, DOI 10.1080/13547500400018570
  12. Dobrovolskaia MA, 2009, NAT NANOTECHNOL, V4, P411, DOI [10.1038/nnano.2009.175, 10.1038/NNANO.2009.175]
  13. Elgrabli D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124490
  14. European Commission, 2011, OFF J EUR UNION L, V275, P38, DOI 10.3000/19770677.L_2011.275.ENG
  15. Fard JK, 2015, ADV PHARM BULL, V5, P447
  16. FDA (Food and Drug Agency), 2015, SUMM COL ADD US US F
  17. JECFA ( Joint FAO/ WHO Expert Committee on Food Additives), 1969, JECFA TECHN REP SER
  18. Forbe T, 2011, CIENCIA TECNOL ALIME, V31, P835, DOI 10.1590/S0101-20612011000400002
  19. Frohlich E, 2012, TOXICOLOGY, V291, P10, DOI 10.1016/j.tox.2011.11.004
  20. Guichard Y, 2012, ANN OCCUP HYG, V56, P631, DOI 10.1093/annhyg/mes006
  21. Heringa MB, 2016, NANOTOXICOLOGY, V10, P1515, DOI 10.1080/17435390.2016.1238113
  22. JECFA (Joint FAO/ WHO Expert Committee on Food Additives), 1969, JECFA TECHN REP SER
  23. Jovanovic B, 2015, INTEGR ENVIRON ASSES, V11, P10, DOI 10.1002/ieam.1571
  24. Kalgaonkar S, 2009, J NUTR BIOCHEM, V20, P304, DOI 10.1016/j.jnutbio.2008.04.003
  25. Kim KT, 2010, SCI TOTAL ENVIRON, V408, P2268, DOI 10.1016/j.scitotenv.2010.01.041
  26. Koeneman BA, 2010, CELL BIOL TOXICOL, V26, P225, DOI 10.1007/s10565-009-9132-z
  27. Kongseng S, 2016, J APPL TOXICOL, V36, P1364, DOI 10.1002/jat.3342
  28. Larsen ST, 2010, BASIC CLIN PHARMACOL, V106, P114, DOI 10.1111/j.1742-7843.2009.00473.x
  29. Lomer MCE, 2005, EUR J GASTROEN HEPAT, V17, P377, DOI 10.1097/00042737-200503000-00019
  30. Lomer MCE, 2004, BRIT J NUTR, V92, P947, DOI 10.1079/BJN20041276
  31. Lomer MCE, 2002, P NUTR SOC, V61, P123, DOI 10.1079/PNS2001134
  32. Loretz B, 2007, NANOTOXICOLOGY, V1, P139, DOI 10.1080/17435390701554200
  33. Mahmud N, 2001, EUR J GASTROEN HEPAT, V13, P93, DOI 10.1097/00042737-200102000-00001
  34. Mano SS, 2012, INT J MOL SCI, V13, P3703, DOI 10.3390/ijms13033703
  35. Martin AE, 2012, ROUTL RES TRAV WRIT, V6, P1
  36. MELEKOGLU A, 2013, INT RES J BIOL SCI, V2, P1
  37. Moyes SM, 2007, INT J PHARM, V337, P133, DOI 10.1016/j.ijpharm.2006.12.036
  38. Nicholls AW, 2003, CHEM RES TOXICOL, V16, P1395, DOI 10.1021/tx0340293
  39. National Institute for Occupational Safety and Health (NIOSH), 2011, OCC EXP TIT DIOX, V1, P1
  40. Nogueira C. M., 2012, GE PORT J GASTROENT, V18, P4729
  41. Oberdorster G, 2007, ENVIRON HEALTH PERSP, V115, pA290
  42. Olmedo DG, 2008, J BIOMED MATER RES A, V84A, P1087, DOI 10.1002/jbm.a.31514
  43. Olmedo DG, 2011, J BIOMED MATER RES A, V98A, P604, DOI 10.1002/jbm.a.33145
  44. Olmedo DG, 2005, J BIOMED MATER RES A, V73A, P142, DOI 10.1002/jbm.a.30230
  45. Park EJ, 2009, TOXICOLOGY, V260, P37, DOI 10.1016/j.tox.2009.03.005
  46. Peters R, 2012, ACS NANO, V6, P2441, DOI 10.1021/nn204728k
  47. Peters RJB, 2014, J AGR FOOD CHEM, V62, P6285, DOI 10.1021/jf5011885
  48. Powell JJ, 2007, BRIT J NUTR, V98, pS59, DOI 10.1017/S0007114507832922
  49. Powell JJ, 2010, J AUTOIMMUN, V34, pJ226, DOI 10.1016/j.jaut.2009.11.006
  50. Reeves JF, 2008, MUTAT RES-FUND MOL M, V640, P113, DOI 10.1016/j.mrfmmm.2007.12.010
  51. Reuter S, 2010, FREE RADICAL BIO MED, V49, P1603, DOI 10.1016/j.freeradbiomed.2010.09.006
  52. Rogers KR, 2012, SCI TOTAL ENVIRON, V420, P334, DOI 10.1016/j.scitotenv.2012.01.044
  53. Rompelberg C, 2016, NANOTOXICOLOGY, V10, P1404, DOI 10.1080/17435390.2016.1222457
  54. Ruenraroengsak P, 2010, J CONTROL RELEASE, V141, P265, DOI 10.1016/j.jconrel.2009.10.032
  55. Ruiz P. A., 2016, GUT, P1
  56. Saehana S., 2011, IJBAS IJENS, V11, P15
  57. Schins RPF, 2007, INHAL TOXICOL, V19, P189, DOI 10.1080/08958370701496202
  58. Sha BY, 2014, J APPL TOXICOL, V34, P345, DOI 10.1002/jat.2900
  59. Shi HB, 2013, PART FIBRE TOXICOL, V10, DOI 10.1186/1743-8977-10-15
  60. Shinohara N, 2014, NANOTOXICOLOGY, V8, P132, DOI 10.3109/17435390.2012.763001
  61. Skocaj M, 2011, RADIOL ONCOL, V45, P227, DOI 10.2478/v10019-011-0037-0
  62. Song ZM, 2015, J APPL TOXICOL, V35, P1169, DOI 10.1002/jat.3171
  63. Tassinari R, 2014, NANOTOXICOLOGY, V8, P654, DOI 10.3109/17435390.2013.822114
  64. Tiede K, 2008, FOOD ADDIT CONTAM A, V25, P795, DOI 10.1080/02652030802007553
  65. Wang HF, 2013, NANOMEDICINE-UK, V8, P2007, DOI 10.2217/nnm.13.176
  66. Weir A, 2012, ENVIRON SCI TECHNOL, V46, P2242, DOI 10.1021/es204168d
  67. Xia T, 2006, NANO LETT, V6, P1794, DOI 10.1021/nl061025k
  68. Xie YM, 2012, TOXICOL SCI, V125, P450, DOI 10.1093/toxsci/kfr251
  69. Yang Y, 2014, ENVIRON SCI TECHNOL, V48, P6391, DOI 10.1021/es500436x
  70. Zhang Y, 2008, WATER RES, V42, P2204, DOI 10.1016/j.watres.2007.11.036