Glucocorticoid-induced Changes in Gene Expression of Airway Smooth Muscle in Patients with Asthma

Carregando...
Imagem de Miniatura
Citações na Scopus
56
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER THORACIC SOC
Autores
YICK, Ching Yong
ZWINDERMAN, Aeilko H.
KUNST, Peter W.
GRUNBERG, Katrien
FLUITER, Kees
BEL, Elisabeth H.
LUTTER, Rene
BAAS, Frank
STERK, Peter J.
Citação
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, v.187, n.10, p.1076-1084, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Rationale: Glucocorticoids are the mainstay of asthma therapy. However, it is unclear whether the benefits of glucocorticoids in asthma are merely based on antiinflammatory properties. Glucocorticoids may also alter gene expression of airway smooth muscle (ASM). We hypothesized that the gene expression profile of the ASM layer in endobronchial biopsies of patients with asthma is altered by oral glucocorticoid therapy as compared with placebo. Objectives: First, we investigated the change in ASM transcriptomic profile in endobronchial biopsies after 14 days of oral glucocorticoid therapy. Second, we investigated the association between changes in ASM transcriptomic profile and lung function. Methods: Twelve steroid-free patients with atopic asthma were included in this double-blind intervention study. Endobronchial biopsies were taken before and after 14 days of oral prednisolone (n = 6) or placebo (n = 6). RNA of laser-dissected ASM was sequenced (RNA-Seq) using GS FLX+(454/Roche). Gene networks were identified by Ingenuity Pathway Analysis. RNA-Seq reads were assumed to follow a negative binomial distribution. At the current sample size the estimated false discovery rate was approximately 3%. Measurements and Main Results: Fifteen genes were significantly changed by 14 days of oral prednisolone. Two of these genes (FAM129A, SYNPO2) were associated with airway hyperresponsiveness (provocative concentration of methacholine causing a 20% drop in FEV1: r = -0.740, P < 0.01; r = -0.746, P < 0.01). Pathway analysis revealed three gene networks that were associated with cellular functions including cellular growth, proliferation, and development. Conclusions: Oral prednisolone changes the transcriptomic profile of the ASM layer in asthma. This indicates that in parallel to antiinflammatory properties, glucocorticoids also exert effects on gene expression of ASM, which is correlated with improved airway function.
Palavras-chave
asthma, airway smooth muscle, RNA-Seq, glucocorticoids, prednisolone
Referências
  1. Ammit AJ, 2009, PULM PHARMACOL THER, V22, P446, DOI 10.1016/j.pupt.2008.10.006
  2. Anders S, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-10-r106
  3. Araujo BB, 2008, EUR RESPIR J, V32, P61, DOI 10.1183/09031936.00147807
  4. Auffray C, 2010, CHEST, V137, P1410, DOI 10.1378/chest.09-1850
  5. Bara I, 2012, AM J RESP CRIT CARE, V185, P715, DOI [10.1164/rccm.201105-0915OC, 10.1164/rccm.201105.0915OC]
  6. Brightling CE, 2002, NEW ENGL J MED, V346, P1699, DOI 10.1056/NEJMoa012705
  7. Busse WW, 2005, AM J RESP CRIT CARE, V172, P807, DOI 10.1164/rccm.200407-966WS
  8. Cao DS, 2012, J BIOL CHEM, V287, P38495, DOI 10.1074/jbc.M112.353649
  9. Cochrane MG, 2000, CHEST, V117, P542, DOI 10.1378/chest.117.2.542
  10. Du KL, 2003, MOL CELL BIOL, V23, P2425, DOI 10.1128/MCB.23.7.2425-2437.2003
  11. Ferreira JA, 2006, STAT APPL GENET MOL, V5
  12. Ferreira JA, 2006, ANN STAT, V34, P1827, DOI 10.1214/009053606000000425
  13. Global Initiative for Asthma (GINA), GINA REP GLOB STRAT
  14. Hakonarson H, 2001, AM J RESP CELL MOL, V25, P761
  15. Halayko AJ, 2006, CURR DRUG TARGETS, V7, P525, DOI 10.2174/138945006776818728
  16. Halwani R, 2011, J IMMUNOL, V186, P4156, DOI 10.4049/jimmunol.1001210
  17. James AL, 2012, AM J RESP CRIT CARE, V185, P1058, DOI 10.1164/rccm.201110-1849OC
  18. Kelly MM, 2012, BRIT J PHARMACOL, V165, P1737, DOI 10.1111/j.1476-5381.2011.01620.x
  19. Kurn N, 2005, CLIN CHEM, V51, P1973, DOI 10.1373/clinchem.2005.053694
  20. Lakser OJ, 2008, EUR RESPIR J, V32, P1224, DOI 10.1183/09031936.00092908
  21. LANDER E S, 1988, Genomics, V2, P231, DOI 10.1016/0888-7543(88)90007-9
  22. Linnemann A, 2010, EUR J CELL BIOL, V89, P681, DOI 10.1016/j.ejcb.2010.04.004
  23. Loza MJ, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001035
  24. Masuno K, 2011, AM J RESP CELL MOL, V45, P642, DOI 10.1165/rcmb.2010-0369OC
  25. Matsumoto F, 2006, HUM PATHOL, V37, P1592, DOI 10.1016/j.humpath.2006.06.022
  26. Mauad T, 2007, J ALLERGY CLIN IMMUN, V120, P997, DOI 10.1016/j.jaci.2007.06.031
  27. Metzker ML, 2010, NAT REV GENET, V11, P31, DOI 10.1038/nrg2626
  28. Miller MR, 2005, EUR RESPIR J, V26, P319, DOI 10.1183/09031936.05.00034805
  29. Reddel H, 1999, BRIT MED J, V319, P45
  30. Siddiqui S, 2013, PULM PHARMACOL THER, V26, P132, DOI 10.1016/j.pupt.2012.08.008
  31. Slats AM, 2008, J ALLERGY CLIN IMMUN, V121, P1196, DOI 10.1016/j.jaci.2008.02.017
  32. Slats AM, 2007, AM J RESP CRIT CARE, V176, P121, DOI 10.1164/rccm.200612-1814OC
  33. Slats AM, 2006, CHEST, V130, P58, DOI 10.1378/chest.130.1.58
  34. Sterk PJ, 2008, EUR RESPIR J, V32, P1135, DOI 10.1183/09031936.00135508
  35. Sterk P J, 1993, Eur Respir J Suppl, V16, P53
  36. Verhelst K, 2011, BIOCHEM PHARMACOL, V82, P1057, DOI 10.1016/j.bcp.2011.07.066
  37. Weterman MAJ, 2012, HUM MOL GENET, V21, P358, DOI 10.1093/hmg/ddr471
  38. Yick CY, 2012, ALLERGY, V67, P552, DOI 10.1111/j.1398-9995.2011.02773.x
  39. Zuluaga S, 2007, CELL SIGNAL, V19, P62, DOI 10.1016/j.cellsig.2006.05.032