Stochastic model of contact inhibition and the proliferation of melanoma in situ

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
MORAIS, Mauro Cesar Cafundo
STUHL, Izabella
QUEIROGA, Alexandre S.
TORTELLI JR., Tharcisio Citrangulo
SUHOV, Yuri
Citação
SCIENTIFIC REPORTS, v.7, article ID 8026, 9p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Contact inhibition is a central feature orchestrating cell proliferation in culture experiments; its loss is associated with malignant transformation and tumorigenesis. We performed a co-culture experiment with human metastatic melanoma cell line (SKMEL-147) and immortalized keratinocyte cells (HaCaT). After 8 days a spatial pattern was detected, characterized by the formation of clusters of melanoma cells surrounded by keratinocytes constraining their proliferation. In addition, we observed that the proportion of melanoma cells within the total population has increased. To explain our results we propose a spatial stochastic model (following a philosophy of the Widom-Rowlinson model from Statistical Physics and Molecular Chemistry) which considers cell proliferation, death, migration, and cell-to-cell interaction through contact inhibition. Our numerical simulations demonstrate that loss of contact inhibition is a sufficient mechanism, appropriate for an explanation of the increase in the proportion of tumor cells and generation of spatial patterns established in the conducted experiments.
Palavras-chave
Referências
  1. ABERCROMBIE M, 1979, NATURE, V281, P259, DOI 10.1038/281259a0
  2. Anderson ARA, 2008, NAT REV CANCER, V8, P227, DOI 10.1038/nrc2329
  3. Anderson ARA, 2006, CELL, V127, P905, DOI 10.1016/j.cell.2006.09.042
  4. Arnal A, 2015, EVOL APPL, V8, P541, DOI 10.1111/eva.12265
  5. Bozic I, 2012, TRENDS MOL MED, V18, P311, DOI 10.1016/j.molmed.2012.04.006
  6. Breivik J, 2005, SEMIN CANCER BIOL, V15, P51, DOI 10.1016/j.semcancer.2004.09.008
  7. Butcher DT, 2009, NAT REV CANCER, V9, P108, DOI 10.1038/nrc2544
  8. Byrne HM, 2010, NAT REV CANCER, V10, P221, DOI 10.1038/nrc2808
  9. Cichorek M, 2013, POSTEP DERM ALERGOL, V30, P30, DOI 10.5114/pdia.2013.33376
  10. Crespi B, 2005, TRENDS ECOL EVOL, V20, P545, DOI 10.1016/j.tree.2005.07.007
  11. Delbruck M., 1940, J CHEM PHYS, V8, P120, DOI [DOI 10.1063/1.1750549, 10.1063/1.1750549]
  12. Dunn GP, 2004, ANNU REV IMMUNOL, V22, P329, DOI 10.1146/annurev.immunol.22.012703.104803
  13. Eisenhoffer GT, 2013, TRENDS CELL BIOL, V23, P185, DOI 10.1016/j.tcb.2012.11.006
  14. Gatenby RA, 2003, CANCER RES, V63, P6212
  15. Gatenby RA, 2003, NATURE, V421, P321, DOI 10.1038/421321a
  16. Gatenby RA, 2002, CANCER RES, V62, P3675
  17. Gatenby RA, 2004, NAT REV CANCER, V4, P891, DOI 10.1038/nrc1478
  18. Gatenby RA, 1996, CANCER RES, V56, P5745
  19. Gatenby RA, 2008, MATH MED BIOL, V25, P267, DOI 10.1093/imammb/dqn014
  20. Gatenby RA, 2009, CANCER RES, V69, P4894, DOI 10.1158/0008-5472.CAN-08-3658
  21. Guillot C, 2013, SCIENCE, V340, P1185, DOI 10.1126/science.1235249
  22. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  23. Harvey KF, 2013, NAT REV CANCER, V13, P246, DOI 10.1038/nrc3458
  24. Hatzikirou H, 2012, MATH MED BIOL, V29, P49, DOI 10.1093/imammb/dqq011
  25. Kim NG, 2011, P NATL ACAD SCI USA, V108, P11930, DOI 10.1073/pnas.1103345108
  26. Kreeger PK, 2010, CARCINOGENESIS, V31, P2, DOI 10.1093/carcin/bgp261
  27. Kuang Y., 2015, INTRO MATEMATICAL ON
  28. Kumar S, 2009, CANCER METAST REV, V28, P113, DOI 10.1007/s10555-008-9173-4
  29. Lash GE, 2002, CAN J PHYSIOL PHARM, V80, P103, DOI 10.1139/Y02-008
  30. Mazel A, 2015, J STAT PHYS, V159, P1040, DOI 10.1007/s10955-015-1219-8
  31. Mazel A., 2014, J STAT MECH THEORY E, V2014
  32. Pan YW, 2016, P NATL ACAD SCI USA, V113, pE6974, DOI 10.1073/pnas.1615012113
  33. Patel AA, 2001, J THEOR BIOL, V213, P315, DOI 10.1006/jtbi.2001.2385
  34. Puliafito A, 2012, P NATL ACAD SCI USA, V109, P739, DOI 10.1073/pnas.1007809109
  35. Rejniak KA, 2011, WIRES SYST BIOL MED, V3, P115, DOI 10.1002/wsbm.102
  36. Seluanov A, 2009, P NATL ACAD SCI USA, V106, P19352, DOI 10.1073/pnas.0905252106
  37. Shraiman BI, 2005, P NATL ACAD SCI USA, V102, P3318, DOI 10.1073/pnas.0404782102
  38. Stockinger A, 2001, J CELL BIOL, V154, P1185, DOI 10.1083/jcb.200104036
  39. Streichan SJ, 2014, P NATL ACAD SCI USA, V111, P5586, DOI 10.1073/pnas.1323016111
  40. Tomasetti C, 2015, SCIENCE, V347, P78, DOI 10.1126/science.1260825
  41. WIDOM B, 1970, J CHEM PHYS, V52, P1670, DOI 10.1063/1.1673203
  42. Zeng Q, 2008, CANCER CELL, V13, P188, DOI 10.1016/j.ccr.2008.02.011
  43. Zhang K, 2004, BIOCHEM BIOPH RES CO, V323, P437, DOI 10.1016/j.bbrc.2004.08.011