Local and systemic immunomodulatory mechanisms triggered by Human Papillomavirus transformed cells: a potential role for G-CSF and neutrophils

Carregando...
Imagem de Miniatura
Citações na Scopus
25
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
ALVAREZ, Karla Lucia Fernandez
BELDI, Mariana
SARMANHO, Fabiane
ROSSETTI, Renata Ariza Marques
SILVEIRA, Caio Raony Farina
ANDREOLI, Maria Antonieta
CARUSO, Eliana Dias de Carvalho
KAMILLOS, Marcia Ferreira
SOUZA, Ana Marta
Citação
SCIENTIFIC REPORTS, v.7, article ID 9002, 16p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cervical cancer is the last stage of a series of molecular and cellular alterations initiated with Human Papillomavirus (HPV) infection. The process involves immune responses and evasion mechanisms, which culminates with tolerance toward tumor antigens. Our objective was to understand local and systemic changes in the interactions between HPV associated cervical lesions and the immune system as lesions progress to cancer. Locally, we observed higher cervical leukocyte infiltrate, reflected by the increase in the frequency of T lymphocytes, neutrophils and M2 macrophages, in cancer patients. We observed a strong negative correlation between the frequency of neutrophils and T cells in precursor and cancer samples, but not cervicitis. In 3D tumor cell cultures, neutrophils inhibited T cell activity, displayed longer viability and longer CD16 expression half-life than neat neutrophil cultures. Systemically, we observed higher plasma G-CSF concentration, higher frequency of immature low density neutrophils, and tolerogenic monocyte derived dendritic cells, MoDCs, also in cancer patients. Interestingly, there was a negative correlation between T cell activation by MoDCs and G-CSF concentration in the plasma. Our results indicate that neutrophils and G-CSF may be part of the immune escape mechanisms triggered by cervical cancer cells, locally and systemically, respectively.
Palavras-chave
Referências
  1. Nicolas-Avila JA, 2017, IMMUNITY, V46, P15, DOI 10.1016/j.immuni.2016.12.012
  2. Cheng FD, 2003, IMMUNITY, V19, P425, DOI 10.1016/S1074-7613(03)00232-2
  3. Chuang FYS, 2000, J IMMUNOL, V164, P350
  4. COLEMAN N, 1994, AM J CLIN PATHOL, V102, P768
  5. de Jong A, 2004, CANCER RES, V64, P5449, DOI 10.1158/0008-5472.CAN-04-0831
  6. Deng YT, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153567
  7. Eikawa S, 2010, J IMMUNOL, V185, P6734, DOI 10.4049/jimmunol.1000225
  8. FRIEDL F, 1970, P SOC EXP BIOL MED, V135, P543
  9. Fujimoto H, 2000, CYTOMETRY, V42, P371, DOI 10.1002/1097-0320(20001215)42:6<371::AID-CYTO1004>3.0.CO;2-G
  10. Givan AL, 1997, AM J REPROD IMMUNOL, V38, P350
  11. Gordon KM, 2003, J IMMUNOL METHODS, V275, P113, DOI 10.1016/S0022-1759(03)00009-7
  12. Gravitt PE, 2000, J CLIN MICROBIOL, V38, P357
  13. Hammes LS, 2007, GYNECOL ONCOL, V105, P157, DOI 10.1016/j.ygyno.2006.11.023
  14. Heusinkveld M, 2011, J IMMUNOL, V187, P1157, DOI 10.4049/jimmunol.1100889
  15. Jiang ST, 2016, ONCOL LETT, V12, P2625, DOI 10.3892/ol.2016.5014
  16. Jordan K. R., 2017, CANC IMMUNO IN PRESS, V66
  17. Kawano M, 2015, SCI REP-UK, V5, DOI 10.1038/srep18217
  18. Kerdiles Y, 2013, J EXP MED, V210, P1065, DOI 10.1084/jem.20130960
  19. Kobayashi A, 2008, MUCOSAL IMMUNOL, V1, P412, DOI 10.1038/mi.2008.33
  20. Koshiol J, 2014, INT J CANCER, V134, P411, DOI 10.1002/ijc.28354
  21. Lepique AP, 2009, CLIN CANCER RES, V15, P4391, DOI 10.1158/1078-0432.CCR-09-0489
  22. Mabuchi S, 2014, JNCI-J NATL CANCER I, V106, DOI 10.1093/jnci/dju147
  23. Mabuchi S, 2011, GYNECOL ONCOL, V122, P25, DOI 10.1016/j.ygyno.2011.03.037
  24. Manz MG, 2014, NAT REV IMMUNOL, V14, P302, DOI 10.1038/nri3660
  25. Maqbool M., 1994, MED J MALAYSIA, V66, P296
  26. Marini O., 2017, BLOOD IN PRESS
  27. Mazibrada J, 2008, GYNECOL ONCOL, V108, P112, DOI 10.1016/j.ygyno.2007.08.095
  28. MULDER WMC, 1994, CANCER IMMUNOL IMMUN, V38, P253, DOI 10.1007/s002620050061
  29. Palefsky Joel M, 2003, J Natl Cancer Inst Monogr, P41
  30. Perobelli SM, 2016, J IMMUNOL, V197, P3725, DOI 10.4049/jimmunol.1502023
  31. Petrillo M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136654
  32. Piersma SJ, 2007, CANCER RES, V67, P354, DOI 10.1158/0008-5472.CAN-06-3388
  33. Pillay J, 2012, J CLIN INVEST, V122, P327, DOI 10.1172/JCI57990
  34. Punt S, 2015, ONCOIMMUNOLOGY, V4, DOI 10.4161/2162402X.2014.984539
  35. Roberts AW, 2005, GROWTH FACTORS, V23, P33, DOI 10.1080/08977190500055836
  36. Sagiv JY, 2015, CELL REP, V10, P562, DOI 10.1016/j.celrep.2014.12.039
  37. Sauce D, 2017, J GERONTOL A-BIOL, V72, P163, DOI 10.1093/gerona/glw062
  38. Stone SC, 2014, IMMUN INFLAMM DIS, V2, P63, DOI 10.1002/iid3.21
  39. Stone SC, 2014, J LEUKOCYTE BIOL, V96, P619, DOI 10.1189/jlb.3A0513-282R
  40. Trimble CL, 2010, J IMMUNOL, V185, P7107, DOI 10.4049/jimmunol.1002756
  41. van der Burg SH, 2007, P NATL ACAD SCI USA, V104, P12087, DOI 10.1073/pnas.0704672104
  42. Vizcaino AP, 1998, INT J CANCER, V75, P536, DOI 10.1002/(SICI)1097-0215(19980209)75:4<536::AID-IJC8>3.0.CO;2-U
  43. Walboomers JMM, 1999, J PATHOL, V189, P12, DOI 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
  44. Wira CR, 2015, NAT REV IMMUNOL, V15, P217, DOI 10.1038/nri3819
  45. Wu JY, 2017, ONCOTARGET, V8, P13400, DOI 10.18632/oncotarget.14541
  46. Zhang H, 2015, GASTRIC CANCER, V18, P740, DOI 10.1007/s10120-014-0422-7