Early Postnatal Cardiomyocyte Proliferation Requires High Oxidative Energy Metabolism

Carregando...
Imagem de Miniatura
Citações na Scopus
33
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Citação
SCIENTIFIC REPORTS, v.7, article ID 15434, 11p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart. Gene expression analysis suggests a gradual overall upregulation of oxidative-related genes and pathways, whereas functional assessment in both cardiac tissue and cultured cardiomyocytes indicated that oxidative metabolism decreases between the first and seventh days after birth. Cardiomyocyte extracellular flux analysis indicated that the decrease in oxidative metabolism between the first and seventh days after birth was mostly related to lower rates of ATP-linked mitochondrial respiration, suggesting that overall energetic demands decrease during this period. In parallel, the proliferation rate was higher for early cardiomyocytes. Furthermore, in vitro nonlethal chemical inhibition of mitochondrial respiration reduced the proliferative capacity of early cardiomyocytes, indicating a high energy demand to sustain cardiomyocyte proliferation. Altogether, we provide evidence that early postnatal cardiomyocyte proliferative capacity correlates with high oxidative energy metabolism. The energy requirement decreases as the proliferation ceases in the following days, and both oxidative-dependent metabolism and anaerobic glycolysis subside.
Palavras-chave
Referências
  1. Alkass K, 2015, CELL, V163, P1026, DOI 10.1016/j.cell.2015.10.035
  2. Bergmann O, 2009, SCIENCE, V324, P98, DOI 10.1126/science.1164680
  3. Brand MD, 2011, BIOCHEM J, V435, P297, DOI 10.1042/BJ20110162
  4. Brodarac A, 2015, STEM CELL RES THER, V6, DOI 10.1186/s13287-015-0057-6
  5. Delbridge LMD, 2015, AM J PHYSIOL-HEART C, V308, pH1194, DOI 10.1152/ajpheart.00002.2015
  6. Fornazari M, 2011, J BIOENERG BIOMEMBR, V43, P531, DOI 10.1007/s10863-011-9374-3
  7. Forni MF, 2016, STEM CELLS, V34, P743, DOI 10.1002/stem.2248
  8. Hutter E, 2006, EXP GERONTOL, V41, P103, DOI 10.1055/s-2005-858859
  9. Lai L, 2008, GENE DEV, V22, P1948, DOI 10.1101/gad.1661708
  10. Lai L, 2014, CIRC-HEART FAIL, V7, P1022, DOI 10.1161/CIRCHEARTFAILURE.114.001469
  11. Lemasters JJ, 2005, REJUV RES, V8, P3, DOI 10.1089/rej.2005.8.3
  12. Leone M, 2015, AM J PHYSIOL-HEART C, V309, pH237, DOI 10.1152/ajpheart.00559.2015
  13. Lopaschuk GD, 2010, J CARDIOVASC PHARM, V56, P130, DOI 10.1097/FJC.0b013e3181e74a14
  14. LOPASCHUK GD, 1991, AM J PHYSIOL, V261, pH1698
  15. Manesia JK, 2015, STEM CELL RES, V15, P715, DOI 10.1016/j.scr.2015.11.001
  16. Mendler L, 2016, CIRC RES, V118, P132, DOI 10.1161/CIRCRESAHA.115.307730
  17. Neary MT, 2014, J MOL CELL CARDIOL, V74, P340, DOI 10.1016/j.yjmcc.2014.06.013
  18. Nicholls D. G., 2010, J VISUALIZED EXPT JO, V46
  19. Pohjoismaki JLO, 2012, NUCLEIC ACIDS RES, V40, P6595, DOI 10.1093/nar/gks301
  20. Porrello ER, 2011, SCIENCE, V331, P1078, DOI 10.1126/science.1200708
  21. Prosdocimo G, 2017, METHODS MOL BIOL, V1553, P41, DOI 10.1007/978-1-4939-6756-8_4
  22. Puente BN, 2014, CELL, V157, P565, DOI 10.1016/j.cell.2014.03.032
  23. Rooney JP, 2015, METHODS MOL BIOL, V1241, P23, DOI 10.1007/978-1-4939-1875-1_3
  24. Senyo SE, 2013, NATURE, V493, P433, DOI 10.1038/nature11682
  25. Wadosky KM, 2012, AM J PHYSIOL-HEART C, V302, pH515, DOI 10.1152/ajpheart.00703.2011
  26. Zogbi C, 2014, PHYSIOL REP, V2, DOI 10.14814/phy2.12115