A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
GUTH, Beatriz E.
SANTOS, Luis F. dos
FUJITA, Andre
ABE, Cecilia M.
Citação
PLOS ONE, v.12, n.12, article ID e0189613, 28p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains:EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Palavras-chave
Referências
  1. Babu M, 2011, MOL MICROBIOL, V79, P484, DOI 10.1111/j.1365-2958.2010.07465.x
  2. Bando SY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079913
  3. Bansal T, 2012, FEMS IMMUNOL MED MIC, V66, P399, DOI 10.1111/1574-695X.12004
  4. Barabasi AL, 2004, NAT REV GENET, V5, P101, DOI 10.1038/nrg1272
  5. Basavanna S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0049638
  6. Bearson BL, 2009, MICROBIOL-SGM, V155, P805, DOI 10.1099/mic.0.022905-0
  7. Behrends C, 2010, NATURE, V466, P68, DOI 10.1038/nature09204
  8. BEJAR S, 1988, MOL GEN GENET, V212, P11, DOI 10.1007/BF00322439
  9. BEJAR S, 1986, NUCLEIC ACIDS RES, V14, P6821, DOI 10.1093/nar/14.17.6821
  10. Bennett KM, 2014, INFECT IMMUN, V82, P2860, DOI 10.1128/IAI.01681-14
  11. Bergholz TM, 2007, BMC MICROBIOL, V7, DOI 10.1186/1471-2180-7-97
  12. Bhaya D, 2011, ANNU REV GENET, V45, P273, DOI 10.1146/annurev-genet-110410-132430
  13. Bielaszewska M, 2006, CLIN INFECT DIS, V43, P1160, DOI 10.1086/508195
  14. Bradford EM, 2010, AM J PHYSIOL-REG I, V298, pR1531, DOI 10.1152/ajpregu.00849.2009
  15. Braun V, 2007, J BACTERIOL, V189, P6913, DOI 10.1128/JB.00884-07
  16. Chapman SJ, 2007, AM J RESP CRIT CARE, V176, P181, DOI 10.1164/rccm.200702-169OC
  17. Cosgriff S, 2010, MOL MICROBIOL, V77, P1289, DOI 10.1111/j.1365-2958.2010.07292.x
  18. Crossman LC, 2010, J BACTERIOL, V192, P5822, DOI 10.1128/JB.00710-10
  19. Cui SH, 2001, APPL ENVIRON MICROB, V67, P4914, DOI 10.1128/AEM.67.10.4914-4918.2001
  20. Dach K, 2009, INFECT IMMUN, V77, P5583, DOI 10.1128/IAI.00121-09
  21. Daniels JJD, 1996, INFECT IMMUN, V64, P5075
  22. De Biase D, 2012, MOL MICROBIOL, V86, P770, DOI 10.1111/mmi.12020
  23. dos Santos LF, 2017, J APPL MICROBIOL, V122, P1101, DOI 10.1111/jam.13409
  24. dos Santos LF, 2010, J MED MICROBIOL, V59, P634, DOI 10.1099/jmm.0.015263-0
  25. Doughty S, 2002, INFECT IMMUN, V70, P6761, DOI 10.1128/IAI.70.12.6761-6769.2002
  26. Elewaut D, 1999, J IMMUNOL, V163, P1457
  27. Ellison DW, 2006, CURR OPIN MICROBIOL, V9, P153, DOI 10.1016/j.mib.2006.02.003
  28. Feighner SD, 1999, SCIENCE, V284, P2184, DOI 10.1126/science.284.5423.2184
  29. Feng P, 2017, J FOOD PROTECT, V80, P383, DOI 10.4315/0362-028X.JFP-16-325
  30. Feng PCH, 2014, APPL ENVIRON MICROB, V80, P4757, DOI 10.1128/AEM.01182-14
  31. Fluhrer R, 2006, NAT CELL BIOL, V8, P894, DOI 10.1038/ncb1450
  32. Fogg PCM, 2011, NUCLEIC ACIDS RES, V39, P2116, DOI 10.1093/nar/gkq923
  33. Follows SA, 2009, INFECT IMMUN, V77, P3602, DOI 10.1128/IAI.01366-08
  34. Franz E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120353
  35. Gao N, 2010, J BIOL CHEM, V285, P28097, DOI 10.1074/jbc.M110.116566
  36. Gerhardt A, 2004, CANCER LETT, V208, P197, DOI 10.1016/j.canlet.2003.11.021
  37. Gonzalez AGM, 2016, J APPL MICROBIOL, V121, P1130, DOI 10.1111/jam.13230
  38. Grimaldi S, 2010, J BIOL CHEM, V285, P179, DOI 10.1074/jbc.M109.060251
  39. Haneburger I, 2012, J MOL BIOL, V424, P15, DOI 10.1016/j.jmb.2012.08.023
  40. Hankins JS, 2010, J BACTERIOL, V192, P2482, DOI 10.1128/JB.01619-09
  41. Hattori T, 2015, FEBS OPEN BIO, V5, P605, DOI 10.1016/j.fob.2015.06.005
  42. Higgins SE, 2011, POULTRY SCI, V90, P901, DOI 10.3382/ps.2010-00907
  43. Houghton FJ, 2012, EXP CELL RES, V318, P464, DOI 10.1016/j.yexcr.2011.12.023
  44. Hu WL, 2013, CELL MICROBIOL, V15, P1624, DOI 10.1111/cmi.12141
  45. Huang GTJ, 1996, J CLIN INVEST, V98, P572, DOI 10.1172/JCI118825
  46. Imamovic L, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032393
  47. Jandhyala DM, 2016, INFECT IMMUN, V84, P138, DOI 10.1128/IAI.00977-15
  48. Kaleem A, 2008, J CELL BIOCHEM, V103, P835, DOI 10.1002/jcb.21454
  49. KARMALI MA, 1985, J INFECT DIS, V151, P775, DOI 10.1093/infdis/151.5.775
  50. Konar M, 2012, FEMS IMMUNOL MED MIC, V66, P177, DOI 10.1111/j.1574-695X.2012.00998.x
  51. Kulsantiwong P, 2016, MED MICROBIOL IMMUN, V205, P255, DOI 10.1007/s00430-015-0440-z
  52. Lanciano P, 2007, J BIOL CHEM, V282, P17468, DOI 10.1074/jbc.M700994200
  53. Lemire S, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002149
  54. Li QM, 2013, TUMOR BIOL, V34, P505, DOI 10.1007/s13277-012-0575-0
  55. Li ZY, 2011, ANAT REC, V294, P1015, DOI 10.1002/ar.21395
  56. Lin C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056499
  57. Liu Y, 2012, BMC SYST BIOL, V6, DOI 10.1186/1752-0509-6-65
  58. Loebel DAF, 2011, DEVELOPMENT, V138, P4511, DOI 10.1242/dev.063867
  59. M'Bika JP, 2010, J GEN VIROL, V91, P1346, DOI 10.1099/vir.0.016030-0
  60. Macmaster R, 2006, NUCLEIC ACIDS RES, V34, P5577, DOI 10.1093/nar/gkl447
  61. Martinsohn JT, 2008, PLOS GENETICS, V4
  62. Massrieh W, 2006, BIOL REPROD, V74, P699, DOI 10.1095/biolreprod.105.045450
  63. Matsutani S, 1997, J MOL BIOL, V267, P548, DOI 10.1006/jmbi.1996.0894
  64. Matussek A, 2016, J PEDIAT INF DIS SOC, V5, P147, DOI 10.1093/jpids/piv003
  65. McMaken S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019654
  66. Mcnab FW, 2011, CURR OPIN IMMUNOL, V23, P46, DOI 10.1016/j.coi.2010.10.021
  67. Miyamoto Y, 2006, CELL MICROBIOL, V8, P869, DOI 10.1111/j.1462-5822.2005.00673.x
  68. Miyazaki H, 2012, FEMS IMMUNOL MED MIC, V65, P481, DOI 10.1111/j.1574-695X.2012.00979.x
  69. Miyoshi Y, 2016, AM J PHYSIOL-GASTR L, V311, pG105, DOI 10.1152/ajpgi.00405.2015
  70. Monaghan AM, 2012, FOODBORNE PATHOG DIS, V9, P1088, DOI 10.1089/fpd.2012.1257
  71. Moreira CA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128174
  72. Morett E, 2008, J MOL BIOL, V376, P839, DOI 10.1016/j.jmb.2007.12.017
  73. Murthi P, 2012, PLACENTA, V33, P741, DOI 10.1016/j.placenta.2012.06.011
  74. Nishino Kunihiko, 2008, Journal of Infection and Chemotherapy, V14, P23, DOI 10.1007/s10156-007-0575-y
  75. Nobes CD, 1998, J CELL BIOL, V141, P187, DOI 10.1083/jcb.141.1.187
  76. Paton AW, 1999, J CLIN MICROBIOL, V37, P3357
  77. Petruzziello-Pellegrini TN, 2012, CURR OPIN NEPHROL HY, V21, P433, DOI 10.1097/MNH.0b013e328354a62e
  78. Pinske C, 2011, ARCH MICROBIOL, V193, P893, DOI 10.1007/s00203-011-0726-5
  79. Qi SQ, 2014, J BIOL CHEM, V289, P4743, DOI 10.1074/jbc.M113.527473
  80. Qian QY, 2014, BIOCHEM BIOPH RES CO, V443, P1041, DOI 10.1016/j.bbrc.2013.12.090
  81. Roche JK, 2007, AM J PATHOL, V170, P526, DOI 10.2353/ajpath.2007.060366
  82. Rosenberger CM, 2012, J IMMUNOL, V189, P5965, DOI 10.4049/jimmunol.1201437
  83. Ryan KR, 2012, J CELL SCI, V125, P3202, DOI 10.1242/jcs.101931
  84. Sanchez-Torres V, 2009, APPL ENVIRON MICROB, V75, P5639, DOI 10.1128/AEM.00638-09
  85. Satoh-Takayama N, 2011, EUR J IMMUNOL, V41, P780, DOI 10.1002/eji.201040851
  86. Schaer C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018495
  87. Scott DW, 2005, J CELL PHYSIOL, V202, P295, DOI 10.1002/jcp.20135
  88. Selvik LKM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112485
  89. Sheikh SZ, 2011, J BIOL CHEM, V286, P1174, DOI 10.1074/jbc.M110.147884
  90. Shimizu M, 2012, CYTOKINE, V60, P694, DOI 10.1016/j.cyto.2012.07.038
  91. Singh VK, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117594
  92. Spory A, 2002, J BACTERIOL, V184, P3549, DOI 10.1128/JB.184.13.3549-3559.2002
  93. Staege MS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089577
  94. Stenstedt K, 2012, ANTICANCER RES, V32, P3869
  95. Stummeyer K, 2006, MOL MICROBIOL, V60, P1123, DOI 10.1111/j.1365-2958.2006.05173.x
  96. Taka N, 2009, BIOORG MED CHEM LETT, V19, P3426, DOI 10.1016/j.bmcl.2009.05.059
  97. Terasaki H, 2002, INT J MOL MED, V9, P107
  98. Tran HJ, 2005, J BIOL CHEM, V280, P42423, DOI 10.1074/jbc.M504464200
  99. Trivedi RN, 2015, IMMUNOBIOLOGY, V220, P1322, DOI 10.1016/j.imbio.2015.07.011
  100. Tumanov AV, 2011, CELL HOST MICROBE, V10, P44, DOI 10.1016/j.chom.2011.06.002
  101. Ueda K, 2003, ONCOGENE, V22, P5586, DOI 10.1038/sj.onc.1206845
  102. Uehata T, 2013, BBA-GENE REGUL MECH, V1829, P708, DOI 10.1016/j.bbagrm.2013.03.001
  103. Vereecke L, 2010, J EXP MED, V207, P1513, DOI 10.1084/jem.20092474
  104. Vinayagam A, 2011, SCI SIGNALING, V4
  105. Vonberg RP, 2013, CLIN INFECT DIS, V56, P1132, DOI 10.1093/cid/cis1218
  106. Wang LS, 2012, J TRANSLATIONAL MED, V10
  107. Wang XX, 2010, NAT COMMUN, V1, DOI 10.1038/ncomms1146
  108. Wu F, 2007, J IMMUNOL, V179, P6988, DOI 10.4049/jimmunol.179.10.6988
  109. Xu JW, 2012, NUCLEIC ACIDS RES, V40, P6957, DOI 10.1093/nar/gks359
  110. Yamamoto M, 2004, NATURE, V430, P218, DOI 10.1038/nature02738
  111. Yang SK, 1997, GASTROENTEROLOGY, V113, P1214, DOI 10.1053/gast.1997.v113.pm9322516
  112. Yun S., 2012, INT J ADV ROBOT SYST, V2012, P9
  113. Zhang JS, 2011, MOL BIOL CELL, V22, P2119, DOI 10.1091/mbc.E10-12-0969
  114. Zhang ZG, 2003, ARCH MICROBIOL, V180, P88, DOI 10.1007/s00203-003-0561-4
  115. Zhou Q, 2012, BRIT J PHARMACOL, V166, P1756, DOI 10.1111/j.1476-5381.2012.01875.x
  116. [Anonymous], 2017, WORLD BEEF EXPORTS R
  117. [Anonymous], 2017, WORD BEEF PRODUCTION