Genetic ancestry effects on the distribution of toll-like receptors (TLRs) gene polymorphisms in a population of the Atlantic Forest, Sao Paulo, Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
BAJAY, Miklos Maximiliano
WUNDERLICH, Gerhard
SANTOS, Sidney E.
Citação
HUMAN IMMUNOLOGY, v.79, n.2, p.101-108, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The innate immune system governed by toll -like receptors (TLRs) provides the first line of defense against pathogens. Surface -localized TLR1 and TLR6 are known to detect parasite components. TLR encoding genes were shown to display signatures of recent positive selection in Europeans and might be involved in local adaptation at immune -related genes. To verify the influence of Brazilian population admixture on the distribution of polymorphisms in TLRs, we analyzed the genotype frequencies of 24 polymorphisms distributed across five TLR genes in a Southeastern Brazilian population where autochthonous cases of malaria occur in small foci of transmission. The estimation of ancestry showed mainly European ancestry (63%) followed by African ancestry (22%). Mean proportions of European ancestry differed significantly between the genotypes of the TLR1 (1602S) gene and in the TLR6 (P249S) gene. The chance of having the G allele in TLR1 gene increases as European ancestry increases as well as the chance of having the T allele in the TLR6 gene. The 602S allele is related to a ""hypo -responsiveness"" possibly explaining the high prevalence of asymptomatic malaria cases in areas of Southeastern Brazil. Our results underline the necessity to include informative ancestry markers in genetic association studies in order to avoid biased results.
Palavras-chave
TLRs, Genetic polymorphism, Gene frequency, Brazilian population
Referências
  1. Akira S, 2006, CELL, V124, P783, DOI 10.1016/j.cell.2006.02.015
  2. Apinjohr TO, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081071
  3. Arbour NC, 2000, NAT GENET, V25, P187
  4. Barreiro LB, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000562
  5. Callegari-Jacques SM, 2003, AM J HUM BIOL, V15, P824, DOI 10.1002/ajhb.10217
  6. Cardena MMSG, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062005
  7. Casanova JL, 2011, ANNU REV IMMUNOL, V29, P447, DOI 10.1146/annurev-immunol-030409-101335
  8. Cassiano GC, 2015, HUM IMMUNOL, V76, P836, DOI 10.1016/j.humimm.2015.09.045
  9. Coop G, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000500
  10. Crisan TO, 2012, GENE, V494, P109, DOI 10.1016/j.gene.2011.12.008
  11. de Pina-Costa A, 2014, MEM I OSWALDO CRUZ, V109, P618, DOI 10.1590/0074-0276140228
  12. De Mendiburu F, 2015, PEERJ PREPRINTS, V3, pe1748, DOI [10.7287/peerj.preprints.1404v1, DOI 10.7287/PEERJ.PREPRINTS.1404V1]
  13. Enard D, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000840
  14. Falush D, 2003, GENETICS, V164, P1567
  15. Falush D, 2007, MOL ECOL NOTES, V7, P574, DOI 10.1111/j.1471-8286.2007.01758.x
  16. Ferwerda B, 2007, P NATL ACAD SCI USA, V104, P16645, DOI 10.1073/pnas.0704828104
  17. Georgel P, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007803
  18. Greene JA, 2012, MALARIA J, V11, DOI 10.1186/1475-2875-11-47
  19. Greene JA, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-50
  20. Hawn TR, 2007, EUR J IMMUNOL, V37, P2280, DOI 10.1002/eji.200737034
  21. Institute Brasileiro de Geografia e Estatistica (IBGE), 2010, CENS POP
  22. Jelavic TB, 2006, CLIN GENET, V70, P156, DOI 10.1111/j.1399-0004.2006.00651.x
  23. Johnson CM, 2007, J IMMUNOL, V178, P7520, DOI 10.4049/jimmunol.178.12.7520
  24. Keenan K, 2013, METHODS ECOL EVOL, V4, P782, DOI 10.1111/2041-210X.12067
  25. Laayouni H, 2014, P NATL ACAD SCI USA, V111, P2668, DOI 10.1073/pnas.1317723111
  26. Leoratti FMS, 2008, J INFECT DIS, V198, P772, DOI 10.1086/590440
  27. Lins TC, 2010, AM J HUM BIOL, V22, P187, DOI 10.1002/ajhb.20976
  28. Misch EA, 2008, PLOS NEGLECT TROP D, V2, DOI 10.1371/journal.pntd.0000231
  29. Nedelec Y, 2016, CELL, V167, P657, DOI 10.1016/j.cell.2016.09.025
  30. Omar AH, 2012, MALARIA J, V11, DOI 10.1186/1475-2875-11-168
  31. Panigrahi S, 2016, IMMUNOL RES, V64, P291, DOI 10.1007/s12026-015-8749-7
  32. Paradowska E, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154100
  33. Pena SDJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017063
  34. Pickrell JK, 2009, GENOME RES, V19, P826, DOI 10.1101/gr.087577.108
  35. Pritchard JK, 2000, AM J HUM GENET, V67, P170, DOI 10.1086/302959
  36. Pritchard JK, 2000, GENETICS, V155, P945
  37. Quach H, 2016, CELL, V167, P643, DOI 10.1016/j.cell.2016.09.024
  38. Quintana-Murci L, 2013, NAT REV IMMUNOL, V13, P280, DOI 10.1038/nri3421
  39. R Core Team, 2016, R LANG ENV STAT COMP
  40. Rajeevan H, 2003, NUCLEIC ACIDS RES, V31, P270, DOI 10.1093/nar/gkg043
  41. Sagoo GS, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000028
  42. Sam-Agudu NA, 2010, AM J TROP MED HYG, V82, P548, DOI 10.4269/ajtmh.2010.09-0467
  43. Santos NPC, 2010, HUM MUTAT, V31, P184, DOI 10.1002/humu.21159
  44. Sherry ST, 2001, NUCLEIC ACIDS RES, V29, P308, DOI 10.1093/nar/29.1.308
  45. Smelaya TV, 2016, SCI REP-UK, V6, DOI 10.1038/srep35021
  46. Suarez-Kurtz G, 2012, FRONT PHARMACOL, V3, DOI 10.3389/fphar.2012.00191
  47. Tian C, 2008, HUM MOL GENET, V17, pR143, DOI 10.1093/hmg/ddn268
  48. Toonen RJ, 2001, BIOTECHNIQUES, V31, P1320
  49. Vargens DD, 2008, EUR J CLIN PHARMACOL, V64, P253, DOI 10.1007/s00228-007-0413-2
  50. Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1
  51. Yim JJ, 2006, GENES IMMUN, V7, P150, DOI 10.1038/sj.gene.6364274
  52. Yim JJ, 2004, FEMS IMMUNOL MED MIC, V40, P163, DOI 10.1016/S0928-8244(03)00342-0