HPV-transformed cells exhibit altered HMGB1-TLR4/MyD88-SARM1 signaling axis

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
ABJAUDE, Walason da Silva
SILVA, Aline Montenegro
BOCCARDO, Enrique
Citação
SCIENTIFIC REPORTS, v.8, article ID 3476, 11p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cervical cancer is one of the leading causes of cancer death in women worldwide. Persistent infection with high-risk human papillomavirus (HPV) types is the main risk factor for the development of cervical cancer precursor lesions. HPV persistence and tumor development is usually characterized by innate immune system evasion. Alterations in Toll-like receptors (TLR) expression and activation may be important for the control of HPV infections and could play a role in the progression of lesions and tumors. In the present study, we analyzed the mRNA expression of 84 genes involved in TLR signaling pathways. We observed that 80% of the differentially expressed genes were downregulated in cervical cancer cell lines relative to normal keratinocytes. Major alterations were detected in genes coding for several proteins of the TLR signaling axis, including TLR adaptor molecules and genes associated with MAPK pathway, NF kappa B activation and antiviral immune response. In particular, we observed major alterations in the HMGB1-TLR4 signaling axis. Functional analysis also showed that HMGB1 expression is important for the proliferative and tumorigenic potential of cervical cancer cell lines. Taken together, these data indicate that alterations in TLR signaling pathways may play a role in the oncogenic potential of cells expressing HPV oncogenes.
Palavras-chave
Referências
  1. Bald T, 2014, NATURE, V507, P109, DOI 10.1038/nature13111
  2. Belinda LWC, 2008, MOL IMMUNOL, V45, P1732, DOI 10.1016/j.molimm.2007.09.030
  3. Boccardo E, 2010, CARCINOGENESIS, V31, P1905, DOI 10.1093/carcin/bgq176
  4. Boulabiar M, 2011, J GEN VIROL, V92, P2422, DOI 10.1099/vir.0.032466-0
  5. Carpenter S, 2007, CELL MICROBIOL, V9, P1891, DOI 10.1111/j.1462-5822.2007.00965.x
  6. Chen YM, 2016, TUMOR BIOL, V37, P4399, DOI 10.1007/s13277-015-4049-z
  7. Chen YC, 2016, SCI REP-UK, V6, DOI 10.1038/srep18815
  8. Chung HW, 2017, CANCER SCI, V108, P1594, DOI 10.1111/cas.13288
  9. Daud II, 2011, INT J CANCER, V128, P879, DOI 10.1002/ijc.25400
  10. Dintilhac A, 2002, J BIOL CHEM, V277, P7021, DOI 10.1074/jbc.M108417200
  11. Feng AL, 2016, ONCOTARGET, V7, P20507, DOI 10.18632/oncotarget.7050
  12. Frazer IH, 2004, NAT REV IMMUNOL, V4, P46, DOI 10.1038/nri1260
  13. Garcia-Chacon R, 2009, ARCH MED RES, V40, P443, DOI 10.1016/j.arcmed.2009.05.003
  14. Goodwin EC, 2000, P NATL ACAD SCI USA, V97, P12513, DOI 10.1073/pnas.97.23.12513
  15. Grote K, 2011, THESCIENTIFICWORLDJO, V11, P981, DOI 10.1100/tsw.2011.92
  16. Hasan UA, 2007, J IMMUNOL, V178, P3186, DOI 10.4049/jimmunol.178.5.3186
  17. Hasan UA, 2013, J EXP MED, V210, P1369, DOI 10.1084/jem.20122394
  18. Hasimu Ayshamgul, 2011, Chin J Cancer, V30, P344
  19. Helt AM, 2001, J VIROL, V75, P6737, DOI 10.1128/JVI.75.15.6737-6747.2001
  20. Hirsch I, 2010, TRENDS IMMUNOL, V31, P391, DOI 10.1016/j.it.2010.07.004
  21. Huber R, 2016, SCI REP-UK, V6, DOI 10.1038/srep29914
  22. Jouhi L, 2015, TUMOR BIOL, V36, P7755, DOI 10.1007/s13277-015-3494-z
  23. Jouhi L, 2015, ANTICANCER RES, V35, P1843
  24. Kang R, 2014, MOL ASPECTS MED, V40, P1, DOI 10.1016/j.mam.2014.05.001
  25. Mittal D, 2010, EMBO J, V29, P2242, DOI 10.1038/emboj.2010.94
  26. Murata H, 2013, MOL BIOL CELL, V24, P2772, DOI 10.1091/mbc.E13-01-0016
  27. Pacini L, 2015, J VIROL, V89, P11396, DOI 10.1128/JVI.02151-15
  28. Piras V, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00070
  29. Rajkumar T, 2011, BMC CANCER, V11, DOI 10.1186/1471-2407-11-80
  30. Rhyasen GW, 2015, BRIT J CANCER, V112, P232, DOI 10.1038/bjc.2014.513
  31. Sayama K, 2010, J BIOL CHEM, V285, P30042, DOI 10.1074/jbc.M110.106484
  32. SCHEFFNER M, 1991, P NATL ACAD SCI USA, V88, P5523, DOI 10.1073/pnas.88.13.5523
  33. Sethman CR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070994
  34. Sharma S, 2016, CELL TISSUE RES, V365, P357, DOI 10.1007/s00441-016-2389-7
  35. Stros M, 2009, NUCLEIC ACIDS RES, V37, P2070, DOI 10.1093/nar/gkp067
  36. Summers DW, 2014, J NEUROSCI, V34, P9338, DOI 10.1523/JNEUROSCI.0877-14.2014
  37. Tindle RW, 2002, NAT REV CANCER, V2, P59, DOI 10.1038/nrc700
  38. Voulgarelis M., 2010, MEDIATORS INFLAMMATI, V2010
  39. Wang CH, 2012, CANCER BIOL THER, V13, P727, DOI 10.4161/cbt.20555
  40. Wang HP, 2015, ONCOTARGETS THER, V8, P3523, DOI 10.2147/OTT.S93357
  41. Wang YJ, 2014, J MEMBRANE BIOL, V247, P591, DOI 10.1007/s00232-014-9675-7
  42. Weng H, 2013, BMC CANCER, V13, DOI 10.1186/1471-2407-13-311
  43. Zhao XL, 2017, J PATHOL, V243, P376, DOI 10.1002/path.4958