Aerobic exercise training rescues protein quality control disruption on white skeletal muscle induced by chronic kidney disease in rats

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
MORAES, Wilson Max Almeida Monteiro De
SOUZA, Pamella Ramona Moraes de
PAIXAO, Nathalie Alves da
SOUSA, Luis Gustavo Oliveira de
RIBEIRO, Daniel Araki
MARSHALL, Andrea G.
PRESTES, Jonato
BRUM, Patricia Chakur
MEDEIROS, Alessandra
Citação
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, v.22, n.3, p.1452-1463, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We tested whether aerobic exercise training (AET) would modulate the skeletal muscle protein quality control (PQC) in a model of chronic kidney disease (CKD) in rats. Adult Wistar rats were evaluated in four groups: control (CS) or trained (CE), and 5/6 nephrectomy sedentary (5/6NxS) or trained (5/6NxE). Exercised rats were submitted to treadmill exercise (60min., five times/wk for 2months). We evaluated motor performance (tolerance to exercise on the treadmill and rotarod), cross-sectional area (CSA), gene and protein levels related to the unfolded protein response (UPR), protein synthesis/survive and apoptosis signalling, accumulated misfolded proteins, chymotrypsin-like proteasome activity (UPS activity), redox balance and heat-shock protein (HSP) levels in the tibialis anterior. 5/6NxS presented a trend towards to atrophy, with a reduction in motor performance, down-regulation of protein synthesis and up-regulation of apoptosis signalling; increases in UPS activity, misfolded proteins, GRP78, derlin, HSP27 and HSP70 protein levels, ATF4 and GRP78 genes; and increase in oxidative damage compared to CS group. In 5/6NxE, we observed a restoration in exercise tolerance, accumulated misfolded proteins, UPS activity, protein synthesis/apoptosis signalling, derlin, HSPs protein levels as well as increase in ATF4, GRP78 genes and ATF6 protein levels accompanied by a decrease in oxidative damage and increased catalase and glutathione peroxidase activities. The results suggest a disruption of PQC in white muscle fibres of CKD rats previous to the atrophy. AET can rescue this disruption for the UPR, prevent accumulated misfolded proteins and reduce oxidative damage, HSPs protein levels and exercise tolerance.
Palavras-chave
chronic kidney disease, aerobic exercise training, skeletal muscle, protein quality control, unfolded protein response
Referências
  1. Adams GR, 2006, AM J PHYSIOL-RENAL, V290, pF753, DOI 10.1152/ajprenal.00296.2005
  2. AEBI H, 1984, METHOD ENZYMOL, V105, P121
  3. de Moraes WMAM, 2015, NUTRIENTS, V7, P3751, DOI 10.3390/nu7053751
  4. Antony JM, 2004, NAT NEUROSCI, V7, P1088, DOI 10.1038/nn1319
  5. Bailey JL, 1996, J CLIN INVEST, V97, P1447, DOI 10.1172/JCI118566
  6. Bergamaschi CT, 1997, MED SCI SPORT EXER, V29, P169, DOI 10.1097/00005768-199702000-00001
  7. Bozi LHM, 2016, J CELL MOL MED, V20, P2208, DOI 10.1111/jcmm.12894
  8. Calegari VC, 2012, J APPL PHYSIOL, V112, P711, DOI 10.1152/japplphysiol.00318.2011
  9. Chakrabarti A, 2011, BIOTECHNOL BIOENG, V108, P2777, DOI 10.1002/bit.23282
  10. Collins AJ, 2015, KIDNEY INT SUPPL, V5, P2, DOI 10.1038/kisup.2015.2
  11. Cunha TF, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041701
  12. Deldicque L, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00236
  13. Deldicque L, 2013, J PHYSIOL BIOCHEM, V69, P215, DOI 10.1007/s13105-012-0204-9
  14. Deldicque L, 2012, EXERC SPORT SCI REV, V40, P43, DOI 10.1097/JES.0b013e3182355e8c
  15. Deldicque L, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020993
  16. Dhanasekaran DN, 2008, ONCOGENE, V27, P6245, DOI 10.1038/onc.2008.301
  17. DIESEL W, 1993, AM J KIDNEY DIS, V22, P677, DOI 10.1016/S0272-6386(12)80430-6
  18. Drescher C, 2015, J CACHEXIA SARCOPENI, V6, P303, DOI 10.1002/jcsm.12082
  19. Du J, 2004, J CLIN INVEST, V113, P115, DOI 10.1172/JCI200418330
  20. Essig DA, 1997, CAN J APPL PHYSIOL, V22, P409, DOI 10.1139/h97-026
  21. Fahal IH, 1997, NEPHROL DIAL TRANSPL, V12, P119, DOI 10.1093/ndt/12.1.119
  22. Flisinski M, 2014, J PHYSIOL PHARMACOL, V65, P567
  23. Flisinski M, 2008, RENAL FAILURE, V30, P443, DOI 10.1080/08860220801985694
  24. FLOHE L, 1984, METHOD ENZYMOL, V105, P114
  25. Heiwe S, 2014, AM J KIDNEY DIS, V64, P383, DOI 10.1053/j.ajkd.2014.03.020
  26. Howden EJ, 2012, SPORTS MED, V42, P473, DOI 10.2165/11630800-000000000-00000
  27. Kanazawa M, 2006, AM J HYPERTENS, V19, P80, DOI 10.1016/j.amhyper.2005.07.009
  28. Konstantinidou E, 2002, J REHABIL MED, V34, P40, DOI 10.1080/165019702317242695
  29. Lecker SH, 2006, J AM SOC NEPHROL, V17, P1807, DOI 10.1681/ASN.2006010083
  30. LOTT JA, 1983, CLIN CHEM, V29, P1946
  31. Maloyan A, 2007, P NATL ACAD SCI USA, V104, P5995, DOI 10.1073/pnas.0609202104
  32. Manning BD, 2007, CELL, V129, P1261, DOI 10.1016/j.cell.2007.06.009
  33. Memme JM, 2016, AM J PHYSIOL-CELL PH, V310, pC1024, DOI 10.1152/ajpcell.00009.2016
  34. Moreira JBN, 2013, J APPL PHYSIOL, V114, P1029, DOI 10.1152/japplphysiol.00760.2012
  35. NOUROOZZADEH J, 1994, ANAL BIOCHEM, V220, P403, DOI 10.1006/abio.1994.1357
  36. Raj DSC, 2005, KIDNEY INT, V68, P2338, DOI 10.1111/j.1523-1755.2005.00695.x
  37. Sietsema KE, 2004, KIDNEY INT, V65, P719, DOI 10.1111/j.1523-1755.2004.00411.x
  38. Smolka MB, 2000, AM J PHYSIOL-REG I, V279, pR1539
  39. Tamaki M, 2014, KIDNEY INT, V85, P1330, DOI 10.1038/ki.2013.473
  40. Tice RR, 2000, ENVIRON MOL MUTAGEN, V35, P206, DOI 10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
  41. Turgeman T, 2008, NEUROMUSCULAR DISORD, V18, P857, DOI 10.1016/j.nmd.2008.06.386
  42. Venditti P, 1996, ARCH BIOCHEM BIOPHYS, V331, P63, DOI 10.1006/abbi.1996.0283
  43. Wang XNH, 2009, KIDNEY INT, V76, P751, DOI 10.1038/ki.2009.260
  44. Workeneh BT, 2006, J AM SOC NEPHROL, V17, P3233, DOI 10.1681/ASN.2006020131
  45. Wu J, 2011, CELL METAB, V13, P160, DOI 10.1016/j.cmet.2011.01.003
  46. Zoppi CC, 2008, SCAND J MED SCI SPOR, V18, P67, DOI 10.1111/j.1600-0838.2006.00630.x