Comprehensive Antiretroviral Restriction Factor Profiling Reveals the Evolutionary Imprint of the ex Vivo and in Vivo IFN-beta Response in HTLV-1-Associated Neuroinflammation

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
LEAL, Fabio E.
MENEZES, Soraya Maria
BRAILEY, Phillip M.
GAMA, Lucio
NIXON, Douglas F.
DIERCKX, Tim
KHOURI, Ricardo
Citação
FRONTIERS IN MICROBIOLOGY, v.9, article ID 985, 12p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
HTLV-1-Associated Myelopathy (HAM/TSP) is a progressive neuroinflammatory disorder for which no disease-modifying treatment exists. Modest clinical benefit from type I interferons (IFN-alpha/beta) in HAM/TSP contrasts with its recently identified IFN-inducible gene signature. In addition, IFN-alpha treatment in vivo decreases proviral load and immune activation in HAM/TSP, whereas IFN-beta therapy decreases tax mRNA and lymphoproliferation. We hypothesize this ""IFN paradox"" in HAM/TSP might be explained by both cell type-and gene-specific effects of type I IFN in HTLV-1-associated pathogenesis. Therefore, we analyzed ex vivo transcriptomes of CD4+ T cells, PBMCs and whole blood in healthy controls, HTLV-1-infected individuals, and HAM/TSP patients. First, we used a targeted approach, simultaneously quantifying HTLV-1 mRNA (HBZ, Tax), proviral load and 42 host genes with known antiretroviral (anti -HIV) activity in purified CD4(+) T cells. This revealed two major clusters (""antiviral/protective"" vs. ""proviral/deleterious'), as evidenced by significant negative (TRIM5/TRIM22/BST2) vs. positive correlation (ISG15/PAF1/CDKN1A) with HTLV-1 viral markers and clinical status. Surprisingly, we found a significant inversion of antiretroviral activity of host restriction factors, as evidenced by opposite correlation to in vivo HIV -1 vs. HTLV-1 RNA levels. The anti-HTLV-1 effect of antiviral cluster genes was significantly correlated to their adaptive chimp/human evolution score, for both Tax mRNA and PVL. Six genes of the proposed antiviral cluster underwent lentivirus-driven purifying selection during primate evolution (TRIM5/TRIM22/BST2/APOBEC3F-G-H), underscoring the cross-retroviral evolutionary imprint. Secondly, we examined the genome-wide type I IFN response in HAM/TSP patients, following short-term ex vivo culture of PBMCs with either IFN-alpha or IFNI,. Microarray analysis evidenced 12 antiretroviral genes (including TRIM5(x/TRIM22/BST2) were significantly up-regulated by IFN-alpha, but not IFN-alpha, in HAM/TSP. This was paralleled by a significant decrease in lymphoproliferation by IFN-beta but not IFN(x treatment. Finally, using published ex vivo whole blood transcriptomic data of independent cohorts, we validated the significant positive correlation between TRIM5, TRIM22, and BST2 in HTLV-1-infected individuals and HAM/TSP patients, which was independent of the HAM/TSP disease signature. In conclusion, our results provide ex vivo mechanistic evidence for the observed immunovirological effect of in vivo IFNtreatment in HAM/TSP, reconcile an apparent IFN paradox in HTLV-1 research and identify biomarkers/targets for a precision medicine approach.
Palavras-chave
HTLV-1, HIV, retrovirus, evolution, interferon, neuroinflammation, multiple sclerosis, transcriptomics
Referências
  1. Abdel-Mohsen M, 2015, AIDS, V29, P411, DOI 10.1097/QAD.0000000000000572
  2. Abdel-Mohsen M, 2013, RETROVIROLOGY, V10, DOI 10.1186/1742-4690-10-106
  3. Bangham CRM, 2015, NAT REV DIS PRIMERS, V1, DOI 10.1038/nrdp.2015.12
  4. Baratella M, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005285
  5. Cachat A, 2013, J VIROL, V87, P13386, DOI 10.1128/JVI.02758-13
  6. Costa DT, 2012, CASE REP NEUROL MED, DOI 10.1155/2012/958786
  7. Viana GMD, 2014, REV INST MED TROP SP, V56, P443, DOI 10.1590/S0036-46652014000500013
  8. Dehee A, 2002, J VIROL METHODS, V102, P37, DOI 10.1016/S0166-0934(01)00445-1
  9. Dierckx T, 2017, BLOOD CANCER J, V7, DOI 10.1038/bcj.2016.126
  10. dos Santos PF, 2018, J IMMUNOL, V200, P1434, DOI 10.4049/jimmunol.1701120
  11. Farberov L, 2015, J CELL SCI, V128, P1607, DOI 10.1242/jcs.167817
  12. Forlani G, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00564
  13. Forlani G, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-0853-5
  14. Foster TL, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01853
  15. Gallo RC, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01800
  16. Izumo S, 1996, NEUROLOGY, V46, P1016, DOI 10.1212/WNL.46.4.1016
  17. Kehn Kylene, 2004, Retrovirology, V1, P6, DOI 10.1186/1742-4690-1-6
  18. Kinpara S, 2013, RETROVIROLOGY, V10, DOI 10.1186/1742-4690-10-52
  19. Lascano J, 2016, J VIROL, V90, P308, DOI 10.1128/JVI.02496-15
  20. Leng J, 2014, CELL HOST MICROBE, V15, P717, DOI 10.1016/j.chom.2014.05.011
  21. Liu L, 2011, RETROVIROLOGY, V8, DOI 10.1186/1742-4690-8-94
  22. LU HT, 1995, J EXP MED, V182, P1517, DOI 10.1084/jem.182.5.1517
  23. McLaren PJ, 2015, RETROVIROLOGY, V12, DOI 10.1186/s12977-015-0165-5
  24. Menezes SM, 2014, J NEUROINFLAMM, V11, DOI 10.1186/1742-2094-11-18
  25. Moens B, 2012, VIROL J, V9, DOI 10.1186/1743-422X-9-171
  26. Moens B, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001729
  27. Neil SJD, 2008, NATURE, V451, P425, DOI 10.1038/nature06553
  28. Nexo BA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074063
  29. Nozuma S, 2017, RETROVIROLOGY, V14, DOI 10.1186/s12977-017-0350-9
  30. Oh U, 2005, ANN NEUROL, V57, P526, DOI 10.1002/ana.20429
  31. Ortiz M, 2009, MOL BIOL EVOL, V26, P2865, DOI 10.1093/molbev/msp197
  32. OSAME M, 1986, LANCET, V1, P1031
  33. OSAME M, 1990, HUMAN RETROVIROLOGY : HTLV, P191
  34. Raposo RAS, 2014, J VIROL, V88, P11624, DOI 10.1128/JVI.01771-14
  35. Raposo RAS, 2013, J LEUKOCYTE BIOL, V94, P1051, DOI 10.1189/jlb.0313150
  36. Raposo RAS, 2013, J VIROL, V87, P11924, DOI 10.1128/JVI.02128-13
  37. Rotger M, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000781
  38. Saito M, 2009, RETROVIROLOGY, V6, DOI 10.1186/1742-4690-6-19
  39. Sawada L, 2017, PLOS PATHOG, V13, DOI 10.1371/journal.ppat.1006597
  40. Schoggins JW, 2014, NATURE, V505, P691, DOI 10.1038/nature12862
  41. Schoggins JW, 2011, NATURE, V472, P481, DOI 10.1038/nature09907
  42. Singh R, 2014, J VIROL, V88, P4291, DOI 10.1128/JVI.03603-13
  43. Tagaya Y, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01425
  44. Tattermusch S, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002480
  45. Telenti Amalio, 2005, Infection Genetics and Evolution, V5, P327, DOI 10.1016/j.meegid.2004.11.001
  46. Tosi G, 2011, J VIROL, V85, P10719, DOI 10.1128/JVI.00813-11