Metabolomic and lipidomic profile in men with obstructive sleep apnoea: implications for diagnosis and biomarkers of cardiovascular risk

Carregando...
Imagem de Miniatura
Citações na Scopus
42
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
CARVALHO, Valdemir M.
SALGUEIRO, Jessica S.
DELLAVANCE, Alessandra
CARDOZO, Karina H. M.
Citação
SCIENTIFIC REPORTS, v.8, article ID 11270, 12p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The use of metabolomic and lipidomic strategies for selecting potential biomarkers for obstructive sleep apnoea (OSA) has been little explored. We examined adult male patients with OSA (defined by an apnoea-hypopnoea index >= 15 events/hour), as well as age-, gender-, and fat-composition-matched volunteers without OSA. All subjects were subjected to clinical evaluation, sleep questionnaires for detecting the risk of OSA (Berlin and NoSAS score), metabolomic analysis by gas chromatography coupled to mass spectrometry and lipidomic analysis with liquid chromatography followed by detection by MALDI-MS. This study included 37 patients with OSA and 16 controls. From the 6 metabolites and 22 lipids initially selected, those with the best association with OSA were glutamic acid, deoxy sugar and arachidonic acid (metabolites), and glycerophosphoethanolamines, sphingomyelin and lysophosphocholines (lipids). For the questionnaires, the NoSAS score performed best with screening for OSA (area under the curve [AUC] = 0.724, p = 0.003). The combination of the NoSAS score with metabolites or lipids resulted in an AUC for detecting OSA of 0.911 and 0.951, respectively. In conclusion, metabolomic and lipidomic strategies suggested potential early biomarkers in OSA that could also be helpful in screening for this sleep disorder beyond traditional questionnaires.
Palavras-chave
Referências
  1. BARBOUR B, 1989, NATURE, V342, P918, DOI 10.1038/342918a0
  2. Berry R. B., 2012, RULES TERMINOLOGY TE
  3. Bittencourt Lia Rita Azeredo, 2010, J. bras. pneumol., V36, P23, DOI 10.1590/S1806-37132010001400008
  4. Bradley TD, 2009, LANCET, V373, P82, DOI 10.1016/S0140-6736(08)61622-0
  5. Bradley TD, 2003, CIRCULATION, V107, P1671, DOI 10.1161/01.CIR.0000061757.12581.15
  6. Caretti A., 2005, RECENT RES DEVEL MOL, V2
  7. Chatterjee S, 1998, ARTERIOSCL THROM VAS, V18, P1523, DOI 10.1161/01.ATV.18.10.1523
  8. Chowdhuri S, 2016, AM J RESP CRIT CARE, V193, pE37, DOI 10.1164/rccm.201602-0361ST
  9. Costa LE, 2015, HEART, V101, P1288, DOI 10.1136/heartjnl-2014-307276
  10. Dempsey JA, 2010, PHYSIOL REV, V90, P47, DOI 10.1152/physrev.00043.2008
  11. Drager LF, 2015, AM J PHYSIOL-HEART C, V309, pH1101, DOI 10.1152/ajpheart.00094.2015
  12. Drager LF, 2013, J AM COLL CARDIOL, V62, P569, DOI 10.1016/j.jacc.2013.05.045
  13. Drager LF, 2011, CHEST, V140, P534, DOI 10.1378/chest.10-2223
  14. Drager LF, 2010, AM J CARDIOL, V105, P1135, DOI 10.1016/j.amjcard.2009.12.017
  15. Drager Luciano Ferreira, 2002, Arq. Bras. Cardiol., V78, P531, DOI 10.1590/S0066-782X2002000500013
  16. Dunn WB, 2012, BIOANALYSIS, V4, P2249, DOI [10.4155/BIO.12.204, 10.4155/bio.12.204]
  17. Dunn WB, 2011, NAT PROTOC, V6, P1060, DOI 10.1038/nprot.2011.335
  18. Ferrarini A, 2013, ELECTROPHORESIS, V34, P2873, DOI 10.1002/elps.201300081
  19. Gami AS, 2004, CIRCULATION, V110, P364, DOI 10.1161/01.CIR.0000136587.68725.8E
  20. Giaccia AJ, 2004, GENE DEV, V18, P2183, DOI 10.1101/gad.1243304
  21. He GD, 2014, ASIA PAC J CLIN NUTR, V23, P174, DOI 10.6133/apjcn.2014.23.1.14
  22. Henriksen EJ, 2011, FREE RADICAL BIO MED, V51, P993, DOI 10.1016/j.freeradbiomed.2010.12.005
  23. Vieira JGH, 2014, ARQ BRAS ENDOCRINOL, V58, P844, DOI 10.1590/0004-2730000003347
  24. HOCHACHKA PW, 1986, SCIENCE, V231, P234, DOI 10.1126/science.2417316
  25. Khalyfa A., 2017, RESP PHYSIOL NEUROBI, V17, P30119
  26. Kheirandish-Gozal L, 2017, J AM HEART ASSOC, V6, DOI 10.1161/JAHA.116.004923
  27. Kheirandish-Gozal L, 2017, CHEST, V151, P500, DOI 10.1016/j.chest.2016.09.026
  28. KOTYK A, 1975, FOLIA MICROBIOL, V20, P496, DOI 10.1007/BF02891709
  29. Lavie L, 2009, PROG CARDIOVASC DIS, V51, P303, DOI 10.1016/j.pcad.2008.08.003
  30. Marti-Soler H, 2016, LANCET RESP MED, V4, P742, DOI 10.1016/S2213-2600(16)30075-3
  31. Matyash V, 2008, J LIPID RES, V49, P1137, DOI 10.1194/jlr.D700041-JLR200
  32. McEvoy RD, 2016, NEW ENGL J MED, V375, P919, DOI 10.1056/NEJMoa1606599
  33. Micova P, 2016, MOL CELL BIOCHEM, V423, P151, DOI 10.1007/s11010-016-2833-8
  34. Netzer NC, 1999, ANN INTERN MED, V131, P485, DOI 10.7326/0003-4819-131-7-199910050-00002
  35. Note A., 2009, METABOLITE IDENTIFIC
  36. Oresic M, 2006, EXPERT REV MOL DIAGN, V6, P575, DOI 10.1586/14737159.6.4.575
  37. Platt SR, 2007, VET J, V173, P278, DOI 10.1016/j.tvjl.2005.11.007
  38. Safran M, 2003, J CLIN INVEST, V111, P779, DOI 10.1172/JCI200318181
  39. Salgueiro J. S., 2015, NOVA ESTRATEGIA BIOA
  40. Semenza GL, 2017, EXP CELL RES, V356, P128, DOI 10.1016/j.yexcr.2017.03.041
  41. Semenza Gregg L, 2007, Sci STKE, V2007, pcm8, DOI 10.1126/stke.4072007cm8
  42. Shinohara M, 2012, SLEEP BIOL RHYTHMS, V10, P336, DOI 10.1111/j.1479-8425.2012.00536.x
  43. Sin DD, 1999, AM J RESP CRIT CARE, V160, P1101, DOI 10.1164/ajrccm.160.4.9903020
  44. Sjostrom C, 2002, THORAX, V57, P602, DOI 10.1136/thorax.57.7.602
  45. Somers VK, 2008, CIRCULATION, V118, P1080, DOI 10.1161/CIRCULATIONAHA.107.189375
  46. Suzuki J, 2011, INT HEART J, V52, P266, DOI 10.1536/ihj.52.266
  47. Venables WN, 2003, MODERN APPL STAT S S
  48. Watts JL, 2000, BIOCHEM BIOPH RES CO, V272, P263, DOI 10.1006/bbrc.2000.2772
  49. WEBER PC, 1982, KLIN WOCHENSCHR, V60, P479, DOI 10.1007/BF01756093
  50. Wong CM, 2008, APPL MICROBIOL BIOT, V78, P927, DOI 10.1007/s00253-008-1407-4
  51. Xu HJ, 2016, SCI REP-UK, V6, DOI 10.1038/srep30958
  52. Zhang AH, 2013, ANAL CHEM, V85, P7606, DOI 10.1021/ac401793d