A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma

Carregando...
Imagem de Miniatura
Citações na Scopus
82
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
LABGAA, Ismail
VILLACORTA-MARTIN, Carlos
D'AVOLA, Delia
CRAIG, Amanda J.
FELDEN, Johann von
SIA, Daniela
STUECK, Ashley
WARD, Stephen C.
FIEL, M. Isabel
Citação
ONCOGENE, v.37, n.27, p.3740-3752, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cellular components of solid tumors including DNA are released into the bloodstream, but data on circulating-free DNA (cfDNA) in hepatocellular carcinoma (HCC) are still scarce. This study aimed at analyzing mutations in cfDNA and their correlation with tissue mutations in patients with HCC. We included 8 HCC patients treated with surgical resection for whom we collected paired tissue and plasma/serum samples. We analyzed 45 specimens, including multiregional tumor tissue sampling (n = 24), peripheral blood mononuclear cells (PMBC, n = 8), plasma (n = 8) and serum (n = 5). Ultra-deep sequencing (5500x coverage) of all exons was performed in a targeted panel of 58 genes, including frequent HCC driver genes and druggable mutations. Mutations detected in plasma included known HCC oncogenes and tumor suppressors (e.g., TERT promoter, TP53, and NTRK3) as well as a candidate druggable mutation (JAK1). This approach increased the detection rates previously reported for mutations in plasma of HCC patients. A thorough characterization of cis mutations found in plasma confirmed their tumoral origin, which provides definitive evidence of the release of HCC-derived DNA fragments into the bloodstream. This study demonstrates that ultra-deep sequencing of cfDNA is feasible and can confidently detect somatic mutations found in tissue; these data reinforce the role of plasma DNA as a promising minimally invasive tool to interrogate HCC genetics.
Palavras-chave
Referências
  1. Abbosh C, 2017, NATURE, V545, P446, DOI 10.1038/nature22364
  2. [Anonymous], FDA APPR 1 BLOOD TES
  3. Bettegowda C, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3007094
  4. Cai ZX, 2017, INT J CANCER, V141, P977, DOI 10.1002/ijc.30798
  5. Chang MT, 2016, NAT BIOTECHNOL, V34, P155, DOI 10.1038/nbt.3391
  6. Chapman PB, 2011, NEW ENGL J MED, V364, P2507, DOI 10.1056/NEJMoa1103782
  7. Crowley E, 2013, NAT REV CLIN ONCOL, V10, P472, DOI 10.1038/nrclinonc.2013.110
  8. Dawson SJ, 2013, NEW ENGL J MED, V368, P1199, DOI 10.1056/NEJMoa1213261
  9. De Mattos-Arruda L, 2014, ANN ONCOL, V25, P1729, DOI 10.1093/annonc/mdu239
  10. Hindson BJ, 2011, ANAL CHEM, V83, P8604, DOI 10.1021/ac202028g
  11. Huang A, 2017, J HEPATOL, V67, P293, DOI 10.1016/j.jhep.2017.03.005
  12. Huang A, 2016, J CANCER, V7, P1907, DOI 10.7150/jca.15823
  13. Izumchenko E, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9258
  14. Jiang PY, 2015, P NATL ACAD SCI USA, V112, pE1317, DOI 10.1073/pnas.1500076112
  15. Kan ZY, 2013, GENOME RES, V23, P1422, DOI 10.1101/gr.154492.113
  16. Koboldt DC, 2012, GENOME RES, V22, P568, DOI 10.1101/gr.129684.111
  17. Labgaa I, 2015, DISCOV MED, V19, P263
  18. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  19. Liao WJ, 2016, ONCOTARGET, V7, P40481, DOI 10.18632/oncotarget.9629
  20. Lin XJ, 2015, LANCET ONCOL, V16, P804, DOI 10.1016/S1470-2045(15)00048-0
  21. Llovet JM, 2016, NAT REV DIS PRIMERS, V2, DOI [10.1038/nrdp.2016.18, 10.1038/nrdp.2016.19]
  22. Llovet JM, 2012, J HEPATOL, V56, P908, DOI 10.1016/j.jhep.2011.12.001
  23. Maemondo M, 2010, NEW ENGL J MED, V362, P2380, DOI 10.1056/NEJMoa0909530
  24. Malapelle U, 2017, BRIT J CANCER, V116, P802, DOI 10.1038/bjc.2017.8
  25. MANDEL P, 1948, C R Seances Soc Biol Fil, V142, P241
  26. McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110
  27. Murtaza M, 2013, NATURE, V497, P108, DOI 10.1038/nature12065
  28. Newman AM, 2016, NAT BIOTECHNOL, V34, P547, DOI 10.1038/nbt.3520
  29. Newman AM, 2014, NAT MED, V20, P552, DOI 10.1038/nm.3519
  30. Norton ME, 2015, NEW ENGL J MED, V372, P1589, DOI 10.1056/NEJMoa1407349
  31. Ono A, 2015, CELL MOL GASTROENTER, V1, P516, DOI 10.1016/j.jcmgh.2015.06.009
  32. Russo M, 2016, CANCER DISCOV, V6, P147, DOI 10.1158/2159-8290.CD-15-1283
  33. Schulze K, 2015, NAT GENET, V47, P505, DOI 10.1038/ng.3252
  34. Siravegna G, 2015, NAT MED, V21, P795, DOI 10.1038/nm.3870
  35. Tie J, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aaf6219
  36. Totoki Y, 2014, NAT GENET, V46, P1267, DOI 10.1038/ng.3126
  37. Van der Auwera Geraldine A, 2013, Curr Protoc Bioinformatics, V43, DOI 10.1002/0471250953.bi1110s43
  38. Zehir A, 2017, NAT MED, V23, P703, DOI 10.1038/nm.4333
  39. Zhai WW, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14565
  40. Zill OA, 2015, CANCER DISCOV, V5, P1040, DOI 10.1158/2159-8290.CD-15-0274