A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer

Carregando...
Imagem de Miniatura
Citações na Scopus
313
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
TSUCHIDA, Takuma
LEE, Youngmin A.
FUJIWARA, Naoto
YBANEZ, Maria
ALLEN, Brittany
FIEL, M. Isabel
GOOSSENS, Nicolas
CHOU, Hsin-I.
HOSHIDA, Yujin
Citação
JOURNAL OF HEPATOLOGY, v.69, n.2, p.385-395, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and Aims: Although the majority of patients with non-alcoholic fatty liver disease (NAFLD) have only steatosis without progression, a sizeable fraction develop non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis and hepatocellular carcinoma (HCC). Many established diet-induced mouse models for NASH require 24-52 weeks, which makes testing for drug response costly and time consuming. Methods: We have sought to establish a murine NASH model with rapid progression of extensive fibrosis and HCC by using a western diet (WD), which is high-fat, high-fructose and highcholesterol, combined with low weekly dose of intraperitoneal carbon tetrachloride (CCl4), which serves as an accelerator. Results: C57BL/6J mice were fed a normal chow diet +/- CCl4 or WD +/- CCl4 for 12 and 24 weeks. Addition of CCl4 exacerbated histological features of NASH, fibrosis, and tumor development induced by WD, which resulted in stage 3 fibrosis at 12 weeks and HCC development at 24 weeks. Furthermore, whole liver transcriptomic analysis indicated that dysregulated molecular pathways in WD/CCl4 mice and immunologic features were similar to those of human NASH. Conclusions: Our mouse NASH model exhibits rapid progression of advanced fibrosis and HCC, and mimics histological, immunological and transcriptomic features of human NASH, suggesting that it will be a useful experimental tool for preclinical drug testing. Lay summary: A carefully characterized model has been developed in mice that recapitulates the progressive stages of human fatty liver disease, from simple steatosis, to inflammation, fibrosis and cancer. The functional pathways of gene expression and immune abnormalities in this model closely resemble human disease. The ease and reproducibility of this model make it ideal to study disease pathogenesis and test new treatments.
Palavras-chave
NAFLD, NASH, Steatohepatitis, Fatty liver disease models, Hepatic stellate cells, Fibrosis, Hepatocellular carcinoma, Insulin resistance
Referências
  1. Ahrens M, 2013, CELL METAB, V18, P296, DOI 10.1016/j.cmet.2013.07.004
  2. Asgharpour A, 2016, J HEPATOL, V65, P579, DOI 10.1016/j.jhep.2016.05.005
  3. Bowe JE, 2014, J ENDOCRINOL, V222, pG13, DOI 10.1530/JOE-14-0182
  4. Caballero F, 2009, J HEPATOL, V50, P789, DOI 10.1016/j.jhep.2008.12.016
  5. Charlton M, 2011, AM J PHYSIOL-GASTR L, V301, pG825, DOI 10.1152/ajpgi.00145.2011
  6. Clapper JR, 2013, AM J PHYSIOL-GASTR L, V305, pG483, DOI 10.1152/ajpgi.00079.2013
  7. De Minicis S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097136
  8. Dorn C, 2014, LAB INVEST, V94, P394, DOI 10.1038/labinvest.2014.3
  9. Dowman JK, 2014, AM J PATHOL, V184, P1550, DOI 10.1016/j.ajpath.2014.01.034
  10. Engstrom PG, 2013, NAT METHODS, V10, P1185, DOI [10.1038/NMETH.2722, 10.1038/nmeth.2722]
  11. Frades I, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124544
  12. Gadd VL, 2014, HEPATOLOGY, V59, P1393, DOI 10.1002/hep.26937
  13. Hoshida Y, 2009, CANCER RES, V69, P7385, DOI 10.1158/0008-5472.CAN-09-1089
  14. Hur W, 2015, INT J BIOCHEM CELL B, V64, P265, DOI 10.1016/j.biocel.2015.04.016
  15. Ibrahim SH, 2016, DIGEST DIS SCI, V61, P1325, DOI 10.1007/s10620-015-3977-1
  16. Itagaki H, 2013, INT J CLIN EXP PATHO, V6, P2683
  17. Kim SC, 2014, HEPATOLOGY, V59, P1750, DOI 10.1002/hep.26699
  18. Kita Y, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043056
  19. Kleiner DE, 2016, CLIN LIVER DIS, V20, P293, DOI 10.1016/j.cld.2015.10.011
  20. Kleiner DE, 2005, HEPATOLOGY, V41, P1313, DOI 10.1002/hep.20701
  21. Kobori M, 2011, MOL NUTR FOOD RES, V55, P530, DOI 10.1002/mnfr.201000392
  22. Kristiansen MNB, 2016, WORLD J HEPATOL, V8, P673, DOI 10.4254/wjh.v8.i16.673
  23. Kubota N, 2013, CLIN EXP PHARMACOL P, V40, P422, DOI 10.1111/1440-1681.12102
  24. Kwon EY, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-450
  25. Lee S, 2008, AM J PHYSIOL-ENDOC M, V294, pE261, DOI 10.1152/ajpendo.00676.2007
  26. Lee YA, 2015, GUT, V64, P1337, DOI 10.1136/gutjnl-2014-306842corr1
  27. Liberzon A, 2015, CELL SYST, V1, P417, DOI 10.1016/j.cels.2015.12.004
  28. Ma C, 2016, NATURE, V531, P253, DOI 10.1038/nature16969
  29. Machado MV, 2015, J HEPATOL, V63, P962, DOI 10.1016/j.jhep.2015.05.031
  30. Machado MV, 2015, PLOS ONE, V10
  31. Maeda S, 2005, CELL, V121, P977, DOI 10.1016/j.cell.2005.04.014
  32. Mederacke I, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3823
  33. Moylan CA, 2014, HEPATOLOGY, V59, P471, DOI 10.1002/hep.26661
  34. Nakagawa S, 2016, CANCER CELL, V30, P879, DOI 10.1016/j.ccell.2016.11.004
  35. Puri P, 2007, HEPATOLOGY, V46, P1081, DOI 10.1002/hep.21763
  36. Richardson MM, 2007, GASTROENTEROLOGY, V133, P80, DOI 10.1053/j.gastro.2007.05.012
  37. ROBINSON MD, 2010, GENOME BIOL, V11
  38. Salomao M, 2010, AM J SURG PATHOL, V34, P1630, DOI 10.1097/PAS.0b013e3181f31caa
  39. Savard C, 2013, HEPATOLOGY, V57, P81, DOI 10.1002/hep.25789
  40. Sayiner M, 2016, CLIN LIVER DIS, V20, P205, DOI 10.1016/j.cld.2015.10.001
  41. Scholten D, 2015, LAB ANIM-UK, V49, P4, DOI 10.1177/0023677215571192
  42. Singh S, 2015, CLIN GASTROENTEROL H, V13, P643, DOI 10.1016/j.cgh.2014.04.014
  43. Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102
  44. Teufel A, 2016, GASTROENTEROLOGY, V151, P513, DOI 10.1053/j.gastro.2016.05.051
  45. Tryndyak V, 2012, FASEB J, V26, P4592, DOI 10.1096/fj.12-209569
  46. Tsai WC, 2012, J CLIN INVEST, V122, P2884, DOI 10.1172/JCI63455
  47. Urtasun R, 2012, HEPATOLOGY, V55, P594, DOI 10.1002/hep.24701
  48. Wallace MC, 2015, SEMIN LIVER DIS, V35, P107, DOI 10.1055/s-0035-1550060
  49. Wang DQH, 1999, AM J PHYSIOL-GASTR L, V276, pG751, DOI 10.1152/ajpgi.1999.276.3.G751
  50. Wang XB, 2016, CELL METAB, V24, P848, DOI 10.1016/j.cmet.2016.09.016
  51. Wong RJ, 2014, HEPATOLOGY, V59, P2188, DOI 10.1002/hep.26986
  52. Yang JS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013858
  53. Younossi ZM, 2016, HEPATOLOGY, V64, P73, DOI 10.1002/hep.28431