Multi-ethnic genome-wide association study for atrial fibrillation

Carregando...
Imagem de Miniatura
Citações na Scopus
443
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
ROSELLI, Carolina
CHAFFIN, Mark D.
WENG, Lu-Chen
AESCHBACHER, Stefanie
AHLBERG, Gustav
ALBERT, Christine M.
ALMGREN, Peter
ALONSO, Alvaro
ANDERSON, Christopher D.
ARAGAM, Krishna G.
Citação
NATURE GENETICS, v.50, n.9, p.1225-+, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
Palavras-chave
Referências
  1. Ackerman MJ, 2011, HEART RHYTHM, V8, P1308, DOI 10.1016/j.hrthm.2011.05.020
  2. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248
  3. Aguet F, 2017, NATURE, V550, P204, DOI 10.1038/nature24277
  4. Alexander DH, 2009, GENOME RES, V19, P1655, DOI 10.1101/gr.094052.109
  5. Altshuler DM, 2015, NATURE, V526, P68, DOI 10.1038/nature15393
  6. [Anonymous], 2016, NAT GENET, V48, P1279
  7. Ardlie KG, 2015, SCIENCE, V348, P648, DOI 10.1126/science.1262110
  8. Aulchenko YS, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-134
  9. Barbeira AN, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03621-1
  10. Bellenguez C, 2012, BIOINFORMATICS, V28, P134, DOI 10.1093/bioinformatics/btr599
  11. Benjamin EJ, 2009, NAT GENET, V41, P879, DOI 10.1038/ng.416
  12. Bycroft C, 2017, PREPRINT
  13. Chanda P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068585
  14. Chang CC, 2015, GIGASCIENCE, V4, DOI 10.1186/s13742-015-0047-8
  15. Christophersen IE, 2017, NAT GENET, V49, P946, DOI 10.1038/ng.3843
  16. Chugh SS, 2014, CIRCULATION, V129, P837, DOI 10.1161/CIRCULATIONAHA.113.005119
  17. Chun S, 2009, GENOME RES, V19, P1553, DOI 10.1101/gr.092619.109
  18. Corrado D, 2017, NEW ENGL J MED, V376, P61, DOI 10.1056/NEJMra1509267
  19. Das S, 2016, NAT GENET, V48, P1284, DOI 10.1038/ng.3656
  20. Delaneau O, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15452
  21. den Hoed M, 2013, NAT GENET, V45, P621, DOI 10.1038/ng.2610
  22. Dobin A, 2013, BIOINFORMATICS, V29, P15, DOI 10.1093/bioinformatics/bts635
  23. Ellinor PT, 2012, NAT GENET, V44, P670, DOI 10.1038/ng.2261
  24. Ellinor PT, 2010, NAT GENET, V42, P240, DOI 10.1038/ng.537
  25. Ernst J, 2015, NAT BIOTECHNOL, V33, P364, DOI 10.1038/nbt.3157
  26. Fadista J, 2016, EUR J HUM GENET, V24, P1202, DOI 10.1038/ejhg.2015.269
  27. Fay MP, 2010, J STAT SOFTW, V36, P1
  28. Francioli LC, 2014, NAT GENET, V46, P818, DOI 10.1038/ng.3021
  29. Gamazon ER, 2015, NAT GENET, V47, P1091, DOI 10.1038/ng.3367
  30. Gerull B, 2004, NAT GENET, V36, P1162, DOI 10.1038/ng1461
  31. Goldstein JI, 2012, BIOINFORMATICS, V28, P2543, DOI 10.1093/bioinformatics/bts479
  32. Harrow J, 2012, GENOME RES, V22, P1760, DOI 10.1101/gr.135350.111
  33. Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557
  34. January CT, 2014, CIRCULATION, V130, P2071, DOI 10.1161/CIR.0000000000000040
  35. Kirchhof P, 2011, CIRC-CARDIOVASC GENE, V4, P123, DOI 10.1161/CIRCGENETICS.110.958058
  36. Klarin D, 2017, NAT GENET, V49, P1392, DOI 10.1038/ng.3914
  37. Korn JM, 2008, NAT GENET, V40, P1253, DOI 10.1038/ng.237
  38. Kumar P, 2009, NAT PROTOC, V4, P1073, DOI 10.1038/nprot.2009.86
  39. Lahat H, 2001, AM J HUM GENET, V69, P1378, DOI 10.1086/324565
  40. Lahat H, 2001, CIRCULATION, V103, P2822
  41. Loh PR, 2015, NAT GENET, V47, P1385, DOI 10.1038/ng.3431
  42. Low SK, 2017, NAT GENET, V49, P953, DOI 10.1038/ng.3842
  43. Lu XF, 2015, HUM MOL GENET, V24, P865, DOI 10.1093/hmg/ddu478
  44. Lubitz SA, 2010, JAMA-J AM MED ASSOC, V304, P2263, DOI 10.1001/jama.2010.1690
  45. MacArthur J, 2017, NUCLEIC ACIDS RES, V45, pD896, DOI 10.1093/nar/gkw1133
  46. Marchini J, 2007, NAT GENET, V39, P906, DOI 10.1038/ng2088
  47. McLaren W, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-0974-4
  48. McNair WP, 2004, CIRCULATION, V110, P2163, DOI 10.1161/01.CIR.0000144458.58660.BB
  49. Nadadur RD, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aaf4891
  50. Nielsen J. B, 2018, PREPRINT
  51. Olson TM, 2005, JAMA-J AM MED ASSOC, V293, P447, DOI 10.1001/jama.293.4.447
  52. Pers TH, 2015, BIOINFORMATICS, V31, P418, DOI 10.1093/bioinformatics/btu655
  53. Postma AV, 2008, CIRC RES, V102, P1433, DOI 10.1161/CIRCRESAHA.107.168294
  54. Price AL, 2006, NAT GENET, V38, P904, DOI 10.1038/ng1847
  55. R Core Team, 2015, R LANG ENV STAT COMP
  56. Rosand J, 2016, LANCET NEUROL, V15, P174, DOI 10.1016/S1474-4422(15)00338-5
  57. Schott JJ, 1998, SCIENCE, V281, P108, DOI 10.1126/science.281.5373.108
  58. Schwarz JM, 2010, NAT METHODS, V7, P575, DOI 10.1038/nmeth0810-575
  59. Segre AV, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001058
  60. Sinner MF, 2008, EUR HEART J, V29, P907, DOI 10.1093/eurheartj/ehm619
  61. Sinner MF, 2014, CIRCULATION, V130, P1225, DOI 10.1161/CIRCULATIONAHA.114.009892
  62. Sudlow C, 2015, PLOS MED, V12, DOI 10.1371/journal.pmed.1001779
  63. Syeda F, 2016, J AM COLL CARDIOL, V68, P1881, DOI 10.1016/j.jacc.2016.07.766
  64. Tucker NR, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.117.001902
  65. van Weerd JH, 2014, CIRC RES, V115, P432, DOI 10.1161/CIRCRESAHA.115.303591
  66. Wang J, 2010, P NATL ACAD SCI USA, V107, P9753, DOI 10.1073/pnas.0912585107
  67. Ward LD, 2012, NUCLEIC ACIDS RES, V40, pD930, DOI 10.1093/nar/gkr917
  68. Welter D, 2014, NUCLEIC ACIDS RES, V42, pD1001, DOI 10.1093/nar/gkt1229
  69. Weng LC, 2018, CIRCULATION, V137, P1027, DOI 10.1161/CIRCULATIONAHA.117.031431
  70. Weng LC, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.117.001838
  71. Willer CJ, 2010, BIOINFORMATICS, V26, P2190, DOI 10.1093/bioinformatics/btq340
  72. Yang J, 2012, NAT GENET, V44, P369, DOI 10.1038/ng.2213
  73. Yang JA, 2011, AM J HUM GENET, V88, P76, DOI 10.1016/j.ajhg.2010.11.011