Cell death mechanisms in Leishmania amazonensis triggered by methylene blue-mediated antiparasitic photodynamic therapy

Carregando...
Imagem de Miniatura
Citações na Scopus
26
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
AURELIANO, Debora P.
SOARES, Sandra Regina de Castro
PEREIRA, Thiago Martini
RIBEIRO, Martha Simoes
Citação
PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, v.23, p.1-8, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Antiparasitic photodynamic therapy (ApPDT) is an emerging approach to manage cutaneous leishmaniasis (CL) since no side effects, contraindications and parasite resistance have been reported. In addition, methylene blue (MB) is a suitable photosensitizer to mediate ApPDT on CL. In this study we aimed to look for the best parameters to eradicate Leishmania amazonensis and investigated the cell death pathways involved in MB-mediated ApPDT. MB uptake by parasites was determined using different MB concentrations (50, 100, 250 and 500 mu M) and incubation times (10, 30 and 60 min). L. amazonensis promastigotes were cultured and submitted to ApPDT using different concentrations of MB (50, 100 and 250 mu M) combined to a red LED emitting at 645 +/- 10 nm. The pre-irradiation time was 10 min. Two optical powers (100 mW and 250 mW) were tested and cells were exposed to 60 and 300 s of MB-mediated ApPDT delivering energies of 6, 15, 30 and 75 J and fluences of 21.2, 53.1, 106.2 and 265.4 J/cm(2), respectively. Following ApPDT, cells were prepared for flow cytometry and transmission electron microscopy to unravel the mechanisms of cell death. Our results showed the lowest MB concentration (50 mu M) and the lowest optical power (100 mW) promoted the highest percentage of cell decrease. ApPDT caused alterations on cell membrane permeability as well depolarization of mitochondrial membrane potential. We also observed ultrastructural changes of the parasites such as cell shrinkage, intense vacuolization of the cytoplasm, enlargement of mitochondrion-kinetoplast complex, and small blebs on parasite flagella and cell membrane after MB-mediated ApPDT. Taken together, our findings ratify that ApPDT parameters play a pivotal role in cell susceptibility and suggest that apoptosis is involved in parasite death regardless MB-mediated ApPDT protocol.
Palavras-chave
Apoptosis, Flow cytometry, Membrane fluidity, Membrane potential, Microscopy, Photodynamic therapy, Cutaneous leishmaniasis
Referências
  1. Aureliano D. P., LEISHMANIASIS TRENDS
  2. Bacellar IOL, 2014, PHOTOCHEM PHOTOBIOL, V90, P801, DOI 10.1111/php.12264
  3. David CV, 2009, DERMATOL THER, V22, P491, DOI 10.1111/j.1529-8019.2009.01272.x
  4. Doroodgar M, 2016, KOREAN J PARASITOL, V54, P9, DOI 10.3347/kjp.2016.54.1.9
  5. Duszenko M, 2006, TRENDS PARASITOL, V22, P536, DOI 10.1016/j.pt.2006.08.010
  6. Galluzzi L, 2009, CELL DEATH DIFFER, V16, P1093, DOI 10.1038/cdd.2009.44
  7. Goto H, 2012, INFECT DIS CLIN N AM, V26, P293, DOI 10.1016/j.idc.2012.03.001
  8. Grivicich A., 2007, REV BRAS CANCEROL, V53, P335
  9. Hamblin MR, 2016, CURR OPIN MICROBIOL, V33, P67, DOI 10.1016/j.mib.2016.06.008
  10. Horne TK, 2017, ANTICANCER RES, V37, P2785, DOI 10.21873/anticanres.11630
  11. Jimenez-Ruiz A, 2010, PARASITE VECTOR, V3, DOI 10.1186/1756-3305-3-104
  12. Khademvatan S, 2013, EXP PARASITOL, V135, P208, DOI 10.1016/j.exppara.2013.07.004
  13. Lopes Milene Valeria, 2012, Evid Based Complement Alternat Med, V2012, P298320, DOI 10.1155/2012/298320
  14. Lu Y, 2008, J CELL BIOCHEM, V105, P1451, DOI 10.1002/jcb.21965
  15. Wanderley JLM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005733
  16. Montoya A, 2015, ANTIMICROB AGENTS CH, V59, P5804, DOI 10.1128/AAC.00545-15
  17. Nunez SC, 2014, PHOTOCH PHOTOBIO SCI, V13, P595, DOI 10.1039/c3pp50325a
  18. Pinto JG, 2017, PHOTODIAGN PHOTODYN, V18, P325, DOI 10.1016/j.pdpdt.2017.04.009
  19. Pinto JG, 2016, LASER MED SCI, V31, P883, DOI 10.1007/s10103-016-1928-5
  20. Prates RA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054387
  21. Prates RA, 2009, LASER PHYS, V19, P1038, DOI 10.1134/S1054660X09050284
  22. Proto WR, 2013, NAT REV MICROBIOL, V11, P58, DOI 10.1038/nrmicro2929
  23. Rodrigues IA, 2014, BIOMED RES INT, DOI 10.1155/2014/985171
  24. Schmidt TF, 2015, LANGMUIR, V31, P4205, DOI 10.1021/acs.langmuir.5b00166
  25. Schuster FL, 2002, CLIN MICROBIOL REV, V15, P374, DOI 10.1128/CMR.15.3.374-389.2002
  26. Silva SCSPE, 2016, EXP PARASITOL, V163, P68, DOI 10.1016/j.exppara.2016.01.007
  27. Souza DM, 2017, PARASITE IMMUNOL, V39, DOI 10.1111/pim.12403
  28. Tardivo JP, 2005, PHOTODIAGN PHOTODYN, V2, P175, DOI 10.1016/S1572-1000(05)00097-9
  29. Tixeira R, 2017, APOPTOSIS, V22, P475, DOI 10.1007/s10495-017-1345-7
  30. Torres-Guerrero Edoardo, 2017, F1000Res, V6, P750, DOI 10.12688/f1000research.11120.1
  31. Usacheva MN, 2003, J PHOTOCH PHOTOBIO B, V71, P87, DOI 10.1016/j.jphotobiol.2003.06.002
  32. World Health Organization (WHO), 2017, GLOB OBS HLTH R D PR
  33. Yamamoto ES, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0144946
  34. Zauli-Nascimento RC, 2010, TROP MED INT HEALTH, V15, P68, DOI 10.1111/j.1365-3156.2009.02414.x