Can inflammatory markers in induced sputum be used to detect phenotypes and endotypes of pediatric severe therapy-resistant asthma?

Carregando...
Imagem de Miniatura
Citações na Scopus
20
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
PEDIATRIC PULMONOLOGY, v.53, n.9, p.1208-1217, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundThe phenotypes and endotypes of severe therapy-resistant asthma (STRA) have not been fully elucidated in children. The aim of the present study was to investigate inflammatory markers in the induced sputum of children with STRA and to compare them with those present in a group of children who achieved control. MethodsA prospective cohort of children (6-18 years of age) diagnosed with severe asthma (GINA criteria) who had undergone treatment for at least 6 months was comprehensively followed for 3 months. Inhalation technique, adherence to treatment, ACT score, and main comorbidities were assessed. Induced sputum samples were collected for cytology analysis and quantitative assessment of cytokines; the participants also underwent spirometry, plethysmography, and fractional exhaled nitric oxide (FeNO) measurement. ResultsForty patients were included (average age 12.8 years; 62.5% male); of these, 13 (32.5%) were classified as STRA at the end of follow-up. There were no significant differences between the STRA and control groups in demographic data, functional test results, or FeNO levels. The eosinophilic inflammatory pattern predominated in both groups; however, the STRA group showed a proportionally higher percentage of sputum neutrophils (P<0.05). The median sputum levels of the cytokines IL-10, GM-CSF, IFN-, and TNF- were significantly higher in the STRA group (P<0.05). GM-CSF and TNF- levels showed inverse correlations with ACT scores. ConclusionThe presence of neutrophils, the cytokines IL-10, and IFN- and, more particularly, TNF-, and GM-CSF in the sputum may play an important role in the pathophysiological mechanism of STRA in children and adolescents. Specific antagonists for these cytokines may represent a future therapeutic strategy.
Palavras-chave
children, cytokines, endotypes, induced sputum, inflammatory markers, severe asthma
Referências
  1. Andersson CK, 2017, J ALLERGY CLIN IMMUN, V139, P1819, DOI 10.1016/j.jaci.2016.09.022
  2. Bel EH, 2011, THORAX, V66, P910, DOI 10.1136/thx.2010.153643
  3. Berry MA, 2006, NEW ENGL J MED, V354, P697, DOI 10.1056/NEJMoa050580
  4. Bossley CJ, 2016, J ALLERGY CLIN IMMUN, V138, P413, DOI 10.1016/j.jaci.2015.12.1347
  5. Bossley CJ, 2012, J ALLERGY CLIN IMMUN, V129, P974, DOI 10.1016/j.jaci.2012.01.059
  6. Bussamra MH, 2005, CHEST, V127, P530, DOI 10.1378/chest.127.2.530
  7. Charrad R, 2016, IMMUNOBIOLOGY, V221, P182, DOI 10.1016/j.imbio.2015.09.009
  8. Chatkin José Miguel, 2006, J. bras. pneumol., V32, P277, DOI 10.1590/S1806-37132006000400004
  9. Chung KF, 1999, EUR RESPIR J, V13, P1198
  10. Chung KF, 2015, LANCET, V386, P1086, DOI 10.1016/S0140-6736(15)00157-9
  11. Chung KF, 2014, EUR RESPIR J, V43, P343, DOI 10.1183/09031936.00202013
  12. Ciepiela O, 2015, RESP PHYSIOL NEUROBI, V209, P13, DOI 10.1016/j.resp.2014.12.004
  13. Dente FL, 2006, ANN ALLERG ASTHMA IM, V97, P312, DOI 10.1016/S1081-1206(10)60795-8
  14. Dweik RA, 2011, AM J RESP CRIT CARE, V184, P602, DOI [10.1164/rccm.912011ST, 10.1164/rccm.9120-11ST]
  15. Roxo JPF, 2010, J BRAS PNEUMOL, V36, P159, DOI 10.1590/S1806-37132010000200002
  16. Fleming L, 2012, THORAX, V67, P675, DOI 10.1136/thoraxjnl-2011-201064
  17. Gibson PG, 2001, CHEST, V119, P1329, DOI 10.1378/chest.119.5.1329
  18. Global initiative for asthma (GINA), 2012, GLOB STRAT ASTHM MAN
  19. Laszlo G, 2006, THORAX, V61, P744, DOI 10.1136/thx.2006.061648
  20. Lex C, 2005, PEDIATR PULM, V39, P318, DOI 10.1002/ppul.20159
  21. Louis R, 2009, SWISS MED WKLY, V139, P274, DOI smw-12365
  22. Moore WC, 2010, AM J RESP CRIT CARE, V181, P315, DOI 10.1164/rccm.200906-0896OC
  23. Murray LA, 2006, CURR DRUG TARGETS, V7, P579, DOI 10.2174/138945006776818674
  24. Palomino Addy L. M., 2005, J. Pediatr. (Rio J.), V81, P216, DOI 10.1590/S0021-75572005000400008
  25. Panousis C, 2016, MABS-AUSTIN, V8, P436, DOI 10.1080/19420862.2015.1119352
  26. Paro-Heitor MLZ, 2008, PEDIATR PULM, V43, P134, DOI 10.1002/ppul.20747
  27. Petsky HL, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011439.pub2
  28. Pizzichini E, 1996, AM J RESP CRIT CARE, V154, P308, DOI 10.1164/ajrccm.154.2.8756799
  29. POLGAR G, 1979, AM REV RESPIR DIS, V120, P625
  30. Quanjer PH, 2012, EUR RESPIR J, V40, P1324, DOI 10.1183/09031936.00080312
  31. Rodrigues AM, 2015, J BRAS PNEUMOL, V41, P343, DOI 10.1590/S1806-37132015000004462
  32. Saglani S, 2014, CURR OPIN ALLERGY CL, V14, P143, DOI 10.1097/ACI.0000000000000045
  33. Saha S, 2009, THORAX, V64, P671, DOI 10.1136/thx.2008.108290
  34. Saraiva-Romanholo BM, 2009, CLINICS, V64, P5, DOI 10.1590/S1807-59322009000100002
  35. STOCKS J, 1995, EUR RESPIR J, V8, P492, DOI 10.1183/09031936.95.08030492
  36. Stocks J, 2001, EUR RESPIR J, V17, P302, DOI 10.1183/09031936.01.17203020
  37. Wanger J, 2005, EUR RESPIR J, V26, P511, DOI 10.1183/09031936.05.00035005
  38. Woolhouse IS, 2002, THORAX, V57, P667, DOI 10.1136/thorax.57.8.667
  39. Yamashita N, 2002, CELL IMMUNOL, V219, P92, DOI 10.1016/S0008-8749(02)00565-8