Tree rings reveal the reduction of Cd, Cu, Ni and Pb pollution in the central region of Sao Paulo, Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
33
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
LOCOSSELLI, Giuliano Maselli
CHACON-MADRID, Katherine
ARRUDA, Marco Aurelio Zezzi
ANDRE, Carmen Diva Saldiva de
SINGER, Julio M.
BUCKERIDGE, Marcos Silveira
Citação
ENVIRONMENTAL POLLUTION, v.242, p.320-328, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The concern about environmental pollution has risen in the last decades because of its effects on human's health. However, evaluation of the exposure to certain pollutants is currently hampered by the availability of past environmental data. Tree rings are an alternative to reconstruct environmental variability of pre-instrumental periods. Nevertheless, this approach has some reported limitations including migration of chemical elements in the tree rings. The aim of this study was to evaluate the distribution of Cd, Cu, Hg, Na, Ni, Pb, Zn in the tree rings of Tipuana tipu (Fabaceae) to aid the reconstruction of past environmental pollution. We sampled trees in the central region of the city of Sao Paulo, Brazil, and scanned their tree rings using LA-ICP-MS. We used these data to evaluate the temporal trends of chemical elements under investigation. Results show a non-random distribution of these chemical elements within the tree rings, with higher content in the cell-walls of vessels and lower content in the fibers. Sodium was the only element intimately related to the axial parenchyma cells. Due to differences in elemental composition of xylem cells, temporal trends where evaluated using distinct quartiles of data distribution in each tree ring. The first quartile represents the lower content found in fibers and parenchyma, while the third quartile corresponds to the higher content found in vessels. Data from vessels better represent the decreasing trend of Cd, Cu, Pb, and Ni in the last three decades. This reduction is less significant for Na and Zn. Our results highlight the potential to improve the records of environmental pollution using data from different cells. Pronounced reduction in Pb may be attributed to the lead phase-out in gasoline, while the decreasing trend of Cd, Cu, Ni pollution is probably related to increasing efficiency of vehicles and the deindustrialization of Sao Paulo. Chemical elements are non-randomly distributed in tree rings. Chemical content of vessels cell-walls is a reliable record of metal pollution, which is decreasing in Sao Paulo. (C) 2018 Published by Elsevier Ltd.
Palavras-chave
Dendrochemistry, Wood anatomy, Pollution, Human health, Metals, Tipuana
Referências
  1. Ali H, 2017, ENVIRON CHEM LETT, V15, P329, DOI 10.1007/s10311-016-0601-3
  2. [Anonymous], 2017, R LANG ENV STAT COMP
  3. Benavides María P., 2005, Braz. J. Plant Physiol., V17, P21, DOI 10.1590/S1677-04202005000100003
  4. Breuste JH, 2013, URBAN ECOSYST, V16, P801, DOI 10.1007/s11252-012-0255-2
  5. BROWN PH, 1987, PLANT PHYSIOL, V85, P801, DOI 10.1104/pp.85.3.801
  6. Cetesb, 2015, EV CONC NIQ CADM ARS
  7. Cetesb, 2017, QUALAR SIST INF QUAL
  8. Chen CY, 2009, CLEAN-SOIL AIR WATER, V37, P304, DOI 10.1002/clen.200800199
  9. Clemens S, 2002, TRENDS PLANT SCI, V7, P309, DOI 10.1016/S1360-1385(02)02295-1
  10. CUTTER BE, 1993, J ENVIRON QUAL, V22, P611, DOI 10.2134/jeq1993.00472425002200030028x
  11. DalCorso G, 2008, J INTEGR PLANT BIOL, V50, P1268, DOI 10.1111/j.1744-7909.2008.00737.x
  12. ELLMORE GS, 1986, AM J BOT, V73, P1771, DOI 10.2307/2444244
  13. Ernst Wilfried H. O., 2006, Forest Snow and Landscape Research, V80, P251
  14. FERNANDES JC, 1991, BOT REV, V57, P246, DOI 10.1007/BF02858564
  15. Fitzmaurice G. M. L. N., 2011, APPL LONGITUDINAL AN
  16. Fonti P, 2010, NEW PHYTOL, V185, P42, DOI 10.1111/j.1469-8137.2009.03030.x
  17. Gebauer T, 2008, TREE PHYSIOL, V28, P1821, DOI 10.1093/treephys/28.12.1821
  18. GENTRY AH, 1988, ANN MO BOT GARD, V75, P1, DOI 10.2307/2399464
  19. Geraldo SM, 2014, RADIAT PHYS CHEM, V95, P346, DOI 10.1016/j.radphyschem.2013.03.012
  20. HAGEMEYER J, 1994, SCI TOTAL ENVIRON, V145, P111, DOI 10.1016/0048-9697(94)90301-8
  21. HAGEMEYER J, 1995, SCI TOTAL ENVIRON, V166, P77, DOI 10.1016/0048-9697(95)04476-H
  22. ILDIS, 2017, ILDIS WORLD DAT LEG
  23. Kampa M, 2008, ENVIRON POLLUT, V151, P362, DOI 10.1016/j.envpol.2007.06.012
  24. Krottenthaler S, 2015, DENDROCHRONOLOGIA, V36, P40, DOI 10.1016/j.dendro.2015.08.005
  25. Krzeslowska M, 2011, ACTA PHYSIOL PLANT, V33, P35, DOI 10.1007/s11738-010-0581-z
  26. Kuruneri-Chitepo C, 2011, URBAN FOR URBAN GREE, V10, P247, DOI 10.1016/j.ufug.2011.06.001
  27. LEPP NW, 1975, ENVIRON POLLUT, V9, P49, DOI 10.1016/0013-9327(75)90055-5
  28. Moreira TCL, 2016, ENVIRON INT, V91, P271, DOI 10.1016/j.envint.2016.03.005
  29. Lopez-Fernandez H, 2016, J CHEMINFORMATICS, V8, DOI 10.1186/s13321-016-0178-7
  30. LPAE/FMUSP, 2007, EM POL ATM FONT MOV
  31. LUKASZEWSKI Z, 1993, TREES-STRUCT FUNCT, V7, P169
  32. Lukaszewski Z, 1988, TREES-STRUCT FUNCT, V2, P1, DOI 10.1007/BF01196338
  33. Maathuis FJM, 2014, J EXP BOT, V65, P849, DOI 10.1093/jxb/ert326
  34. Marten A, 2015, ENVIRON SCI POLLUT R, V22, P19417, DOI 10.1007/s11356-015-4902-z
  35. Maillard F, 2016, ENVIRON RES, V148, P122, DOI 10.1016/j.envres.2016.03.034
  36. Martin M. H., 1982, BIOL MONITORING HEAV
  37. Mazza M, 2013, MYCOSES, V56, P646, DOI 10.1111/myc.12084
  38. McLaughlin Samuel B., 2002, Dendrochronologia, V20, P133, DOI 10.1078/1125-7865-00013
  39. Monteiro Fagner Diego Spíndola Correia, 2017, Nova econ., V27, P247, DOI 10.1590/0103-6351/2862
  40. Moreira T. C. L., 2018, FRONT ENV SCI, DOI [10.3389/fenvs.2018.00072, DOI 10.3389/FENVS.2018.00072]
  41. Nakada R, 2012, TREE PHYSIOL, V32, P1497, DOI 10.1093/treephys/tps108
  42. Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x
  43. Novak M, 2010, GEOCHIM COSMOCHIM AC, V74, P4207, DOI 10.1016/j.gca.2010.04.059
  44. Nowak DJ, 2014, ENVIRON POLLUT, V193, P119, DOI 10.1016/j.envpol.2014.05.028
  45. Paoliello MMB, 2007, ENVIRON RES, V103, P288, DOI 10.1016/j.envres.2006.06.013
  46. Pessoa GD, 2017, TALANTA, V167, P317, DOI 10.1016/j.talanta.2017.02.029
  47. Plomion C, 2001, PLANT PHYSIOL, V127, P1513, DOI 10.1104/pp.127.4.1513
  48. Pope CA, 2009, NEW ENGL J MED, V360, P376, DOI 10.1056/NEJMsa0805646
  49. Rodriguez-Navarro A, 2006, J EXP BOT, V57, P1149, DOI 10.1093/jxb/erj068
  50. Scharnweber T, 2016, SCI TOTAL ENVIRON, V566, P1245, DOI 10.1016/j.scitotenv.2016.05.182
  51. Schweingruber F. H, 1996, TREE RINGS ENV DENDR
  52. Seregin IV, 2001, RUSS J PLANT PHYSL+, V48, P523, DOI 10.1023/A:1016719901147
  53. Shashua-Bar L, 2010, INT J CLIMATOL, V30, P44, DOI 10.1002/joc.1869
  54. Smith K. T., 1996, TREE RINGS ENV HUMAN
  55. Soares AL, 2011, URBAN FOR URBAN GREE, V10, P69, DOI 10.1016/j.ufug.2010.12.001
  56. Teixeira E. T., 2014, THESIS
  57. Tong S, 2000, B WORLD HEALTH ORGAN, V78, P1068
  58. Watmough SA, 2002, SCI TOTAL ENVIRON, V293, P85, DOI 10.1016/S0048-9697(01)01149-4
  59. Zamproni Z., 2013, REVSBAU, V8, P1