Peritumoural adipose tissue pro-inflammatory cytokines are associated with tumoural growth factors in cancer cachexia patients

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
PINTO NETO, Nelson Inacio
OYAMA, Lila Missae
FIGUEREDO, Raquel Galvao
ALVES, Michele Joana
LIMA, Joanna Darck Carola Correia
MATOS-NETO, Emidio Marques de
Citação
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, v.9, n.6, p.1101-1108, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Cancer cachexia (CC) is a multifactorial syndrome, often irreversible, that affects patients with cancer influenced, in part, by the inflammatory condition. Peritumoural adipose tissue produces adipokines and angiogenic, apoptotic, and growth factors; given the possible crosstalk between the peritumoural adipose tissue and tumour, these may play an important role in cancer biology and carcinogenesis. Methods Results The aim of this study was to evaluate the factors produced by peritumoural adipose tissue in a cohort of 16 colorectal cancer patients with either weight-stable cancer (WSC; n = 7) or CC (n = 9). The study was approved by the Ethics Research Committee (972.914). Samples of peritumoural adipose tissue were analysed for concentrations of TNF-alpha, IL-1 beta, STAT-1, STAT-3, RANTES, IL-1Ra, IP-10, IL-15, MCP-1, IFN-alpha, GCSF, FADD, and TGF-beta. The cytokines and proteins were measured using Multiplex. Correlations between the proteins and cytokines were evaluated. TNF-alpha, STAT-1, and FADD, a factor involved in apoptosis, were significantly higher in CC group than in the WSC group. In the peritumoural adipose tissue of the CC group, RANTES showed a significant positive correlation with IL-1Ra and IP-10 and a negative correlation with IFN-alpha; and GCSF showed significant negative correlations with IL-1Ra, IP-10, IL-15, and MCP-1 and a positive correlation with IFN-alpha. In the peritumoural adipose tissue of the WSC group, no significant correlations were detected between RANTES, GCSF, IL-3, FADD, and STAT-1 and the cytokines/chemokines analysed. Conclusions These results indicated that inflammatory and tumorigenic pathways were altered in peritumoural adipose tissue in CC. Furthermore, inflammatory cytokines were correlated with growth factors in the peritumoural adipose tissue of cachectic patients, suggesting that inflammatory cytokines modulated the proliferative environment closely linked to the tumour.
Palavras-chave
Peritumoural adipose tissue, Cancer cachexia, Cytokines, Apoptosis
Referências
  1. Amor S, 2016, INT J COLORECTAL DIS, V31, P365, DOI 10.1007/s00384-015-2420-6
  2. Batista ML, 2013, CYTOKINE, V61, P532, DOI 10.1016/j.cyto.2012.10.023
  3. Batista ML, 2012, J ENDOCRINOL, V215, P363, DOI 10.1530/JOE-12-0307
  4. Batista ML, 2016, J CACHEXIA SARCOPENI, V7, P37, DOI 10.1002/jcsm.12037
  5. Bochet L, 2013, CANCER RES, V73, P5657, DOI 10.1158/0008-5472.CAN-13-0530
  6. Camargo RG, 2015, NUTRIENTS, V7, P4465, DOI 10.3390/nu7064465
  7. Cho U, 2018, MOL CARCINOGEN, V57, P235, DOI 10.1002/mc.22750
  8. de Matos-Neto EM, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00629
  9. Dewangan J, 2018, LIFE SCI, V193, P9, DOI 10.1016/j.lfs.2017.11.045
  10. Duckett CS, 2002, J CLIN INVEST, V109, P579, DOI 10.1172/JCI200215197
  11. Evans WJ, 2008, CLIN NUTR, V27, P793, DOI 10.1016/j.clnu.2008.06.013
  12. Giovannucci E, 1996, CANCER CAUSE CONTROL, V7, P253, DOI 10.1007/BF00051301
  13. Grivennikov SI, 2011, ANN RHEUM DIS, V70, pI104, DOI 10.1136/ard.2010.140145
  14. Guzik TJ, 2017, CARDIOVASC RES, V113, P1009, DOI 10.1093/cvr/cvx108
  15. Hauner H, 2005, P NUTR SOC, V64, P163, DOI 10.1079/PNS2005428
  16. Hix LM, 2013, J BIOL CHEM, V288, P11676, DOI 10.1074/jbc.M112.441402
  17. Jedinak A, 2010, IMMUNOBIOLOGY, V215, P242, DOI 10.1016/j.imbio.2009.03.004
  18. Kratochvill F, 2015, CELL REP, V12, P1902, DOI 10.1016/j.celrep.2015.08.033
  19. Lee WM, 2001, CANCER LETT, V162, P155, DOI 10.1016/S0304-3835(00)00635-2
  20. Liang GY, 2013, WORLD J SURG ONCOL, V11, DOI 10.1186/1477-7819-11-199
  21. Lysaght J, 2011, CANCER LETT, V312, P62, DOI 10.1016/j.canlet.2011.07.034
  22. Malashchenko VV, 2018, CELL IMMUNOL, V325, P23, DOI 10.1016/j.cellimm.2018.01.007
  23. Marikar FMMT, 2016, CHIN CLIN ONCOL, V5, DOI 10.21037/cco.2016.11.03
  24. Meissl K, 2017, CYTOKINE, V89, P12, DOI 10.1016/j.cyto.2015.11.011
  25. Michalaki V, 2004, BRIT J CANCER, V90, P2312, DOI 10.1038/sj.bjc.6601814
  26. Ngiow SF, 2013, TRENDS IMMUNOL, V34, P548, DOI 10.1016/j.it.2013.07.004
  27. Park J, 2011, ENDOCR REV, V32, P550, DOI 10.1210/er.2010-0030
  28. Patel HJ, 2017, LIFE SCI, V170, P56, DOI 10.1016/j.lfs.2016.11.033
  29. Shiono M, 2016, CANCER MED-US, V5, P2641, DOI 10.1002/cam4.841
  30. Siegel R, 2012, CA-CANCER J CLIN, V62, P10, DOI 10.3322/caac.20138
  31. Trayhurn P, 2005, ACTA PHYSIOL SCAND, V184, P285, DOI 10.1111/j.1365-201X.2005.01468.x
  32. Tsai RK, 2010, EXP EYE RES, V90, P537, DOI 10.1016/j.exer.2010.01.004
  33. Tsoli M, 2016, SEMIN CELL DEV BIOL, V54, P68, DOI 10.1016/j.semcdb.2015.10.039
  34. von Haehling S, 2017, J CACHEXIA SARCOPENI, V8, P1081, DOI 10.1002/jcsm.12261
  35. Wagner M, 2012, ANGIOGENESIS, V15, P481, DOI 10.1007/s10456-012-9276-y
  36. Wang N, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00614
  37. Whipple Chery A, 2015, Cancer Cell Microenviron, V2, pe773
  38. Zhang QX, 1997, J SURG RES, V67, P147, DOI 10.1006/jsre.1996.4983
  39. Zhang R, 2017, ONCOL LETT, V13, P1899, DOI 10.3892/ol.2017.5636
  40. Zhong W, 2017, ONCOTARGET, V8, P73693, DOI 10.18632/oncotarget.17793
  41. Zoico E, 2017, OBESITY, V25, pS87, DOI 10.1002/oby.22008