Archaea Symbiont of T. cruzi Infection May Explain Heart Failure in Chagas Disease

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, v.8, article ID 412, 8p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Archaeal genes present in Trypanosoma cruzi may represent symbionts that would explain development of heart failure in 30% of Chagas disease patients. Extracellular vesicles in peripheral blood, called exosomes (<0.1 mu m) or microvesicles (>0.1 mu m), present in larger numbers in heart failure, were analyzed to determine whether they are derived from archaea in heart failure Chagas disease. Methods: Exosomes and microvesicles in serum supernatant from 3 groups were analyzed: heart failure Chagas disease (N = 26), asymptomatic indeterminate form (N = 21) and healthy non-chagasic control (N = 16). Samples were quantified with transmission electron microscopy, flow cytometer immunolabeled with anti-archaemetzincin-1 antibody (AMZ 1, archaea collagenase) and probe anti-archaeal DNA and zymography to determine AMZ1 (Archaeal metalloproteinase) activity. Results: Indeterminate form patients had higher median numbers of exosomes/case vs. heart failure patients (58.5 vs. 25.5, P < 0.001), higher exosome content of AMZ1 antigens (2.0 vs. 0.0; P < 0.001), and lower archaeal DNA content (0.2 vs. 1.5, P = 0.02). A positive correlation between exosomes and AMZ1 content was seen in indeterminate form (r = 0.5, P < 0.001), but not in heart failure patients (r = 0.002, P = 0.98). Higher free archaeal DNA (63.0 vs. 11.1, P < 0.001) in correlation with exosome numbers (r = 0.66, P = 0.01) was seen in heart failure but not in indeterminate form (r = 0.29, P = 0.10). Flow cytometer showed higher numbers of AMZ1 microvesicles in indeterminate form (64 vs. 36, P = 0.02) and higher archaeal DNA microvesicles in heart failure (8.1 vs. 0.9, P < 0.001). Zymography showed strong% collagenase activity in HF group, mild activity in IF compared to non-chagasic healthy group (121 +/- 14, 106 +/- 13 and 100; P < 0.001). Conclusions: Numerous exosomes, possibly removing and degrading abnormal AMZ1 collagenase, are associated with indeterminate form. Archaeal microvesicles and their exosomes, possibly associated with release of archaeal AMZ1 in heart failure, are future candidates of heart failure biomarkers if confirmed in larger series, and the therapeutic focus in the treatment of Chagas disease.
Palavras-chave
heart failure, microvesicles, Chagas disease, exosomes, biomarkers
Referências
  1. Bakhshandeh B, 2017, CURR STEM CELL RES T, V12, P31, DOI 10.2174/1574888X11666160709211528
  2. BARRETTO ACP, 1986, AM HEART J, V111, P307, DOI 10.1016/0002-8703(86)90144-4
  3. Barry OP, 1998, J CLIN INVEST, V102, P136, DOI 10.1172/JCI2592
  4. Bellotti G, 1996, AM HEART J, V131, P301, DOI 10.1016/S0002-8703(96)90358-0
  5. Bocchi EA, 2017, J AM COLL CARDIOL, V70, P1510, DOI 10.1016/j.jacc.2017.08.004
  6. Bode AP, 2000, PLATELETS, V11, P259
  7. BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  8. Brodsky SV, 2004, AM J PHYSIOL-HEART C, V286, pH1910, DOI 10.1152/ajpheart.01172.2003
  9. Bulut D, 2011, CLIN RES CARDIOL, V100, P603, DOI 10.1007/s00392-011-0287-2
  10. Bustamante E, 2005, BIOCHEM BIOPH RES CO, V334, P907, DOI 10.1016/j.bbrc.2005.06.174
  11. Carvalho AB, 2017, CYTOTHERAPY, V19, P1339, DOI 10.1016/j.jcyt.2017.07.014
  12. Christersson C, 2017, THROMB HAEMOSTASIS, V117, P1571, DOI 10.1160/TH16-11-0837
  13. Colombo E, 2012, FRONT PHYSIOL, V3, DOI 10.3389/fphys.2012.00063
  14. Corrado C, 2013, INT J MOL SCI, V14, P5338, DOI 10.3390/ijms14035338
  15. Couper KN, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000744
  16. Coura JR, 2002, MEM I OSWALDO CRUZ, V97, P3, DOI 10.1590/S0074-02762002000100001
  17. CUNHANETO E, 1995, P NATL ACAD SCI USA, V92, P3541, DOI 10.1073/pnas.92.8.3541
  18. de Diego JL, 2001, BIOCHEMISTRY-US, V40, P1053, DOI 10.1021/bi001659k
  19. Diaz-Perales A, 2005, J BIOL CHEM, V280, P30367, DOI 10.1074/jbc.M504533200
  20. DUARTE MIS, 1992, ULTRASTRUCT PATHOL, V16, P475
  21. Gao WD, 2003, FRONT BIOSCI-LANDMRK, V8, pE218, DOI 10.2741/1004
  22. Gille C, 2003, J MOL BIOL, V326, P1437, DOI 10.1016/S0022-2836(02)01470-5
  23. Gonzalez J, 1996, J EXP MED, V184, P1909, DOI 10.1084/jem.184.5.1909
  24. Gray WD, 2015, CIRC RES, V116, P255, DOI 10.1161/CIRCRESAHA.116.304360
  25. Hardison RL, 2018, PLOS PATHOG, V14, DOI 10.1371/journal.ppat.1007355
  26. Higuchi MD, 2009, MEM I OSWALDO CRUZ, V104, P199, DOI 10.1590/S0074-02762009000900026
  27. HIGUCHI MD, 1987, CLIN CARDIOL, V10, P665
  28. HIGUCHI MD, 1993, CARDIOVASC PATHOL, V2, P101, DOI 10.1016/1054-8807(93)90021-S
  29. Higuchi MD, 1997, AM J TROP MED HYG, V56, P485
  30. Huber J, 2002, ARTERIOSCL THROM VAS, V22, P101, DOI 10.1161/hq0102.101525
  31. JONES EM, 1993, AM J TROP MED HYG, V48, P348, DOI 10.4269/ajtmh.1993.48.348
  32. Krishnan L, 2000, J IMMUNOL, V165, P5177, DOI 10.4049/jimmunol.165.9.5177
  33. Lang RM, 2015, EUR HEART J-CARD IMG, V16, P233, DOI 10.1093/ehjci/jev014
  34. Leroyer AS, 2007, J AM COLL CARDIOL, V49, P772, DOI 10.1016/j.jacc.2006.10.053
  35. Manrique P, 2017, VIRUSES-BASEL, V9, DOI 10.3390/v9060141
  36. Marin JA, 2007, CIRCULATION, V115, P1109, DOI 10.1161/CIRCULATIONAHA.106.624296
  37. Morillo CA, 2015, NEW ENGL J MED, V373, P1295, DOI 10.1056/NEJMoa1507574
  38. Niemirowicz G, 2007, BIOCHEM J, V401, P399, DOI 10.1042/BJ20060973
  39. Pfeifer P, 2015, BIOMED RES INT, DOI 10.1155/2015/161393
  40. Reis M M, 2000, Rev Soc Bras Med Trop, V33, P509, DOI 10.1590/S0037-86822000000600001
  41. REYNOLDS ES, 1963, J CELL BIOL, V17, P208, DOI 10.1083/jcb.17.1.208
  42. Ridger VC, 2017, THROMB HAEMOSTASIS, V117, P1296, DOI 10.1160/TH16-12-0943
  43. Srinivasan V, 2006, BIOL BULL-US, V210, P1, DOI 10.2307/4134531
  44. Strasen J, 2014, CLIN RES CARDIOL, V103, P1, DOI 10.1007/s00392-013-0613-y
  45. van de Pol JAA, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00355
  46. van der Pol E, 2010, J THROMB HAEMOST, V8, P2596, DOI 10.1111/j.1538-7836.2010.04074.x
  47. Xiong J, 2012, J CARDIOVASC PHARM, V59, P124, DOI 10.1097/FJC.0b013e31820c6254
  48. Yamada SI, 2006, J BIOL CHEM, V281, P23842, DOI 10.1074/jbc.M601274200