Motor Readiness Increases Brain Connectivity Between Default-Mode Network and Motor Cortex: Impact on Sampling Resting Periods from fMRI Event-Related Studies

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
MARY ANN LIEBERT, INC
Autores
BAZAN, Paulo Rodrigo
SATO, Joao Ricardo
Citação
BRAIN CONNECTIVITY, v.5, n.10, p.631-640, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The default-mode network (DMN) has been implicated in many conditions. One particular function relates to its role in motor preparation. However, the possibly complex relationship between DMN activity and motor preparation has not been fully explored. Dynamic interactions between default mode and motor networks may compromise the ability to evaluate intrinsic connectivity using resting period data extracted from task-based experiments. In this study, we investigated alterations in connectivity between the DMN and the motor network that are associated with motor readiness during the intervals between motor task trials. fMRI data from 20 normal subjects were acquired under three conditions: pure resting state; resting state interleaved with brief, cued right-hand movements at constant intervals (lower readiness); and resting state interleaved with the same movements at unpredictable intervals (higher readiness). The functional connectivity between regions of motor and DMNs was assessed separately for movement periods and intertask intervals. We found a negative relationship between the DMN and the left sensorimotor cortex during the task periods for both motor conditions. Furthermore, during the intertask intervals of the unpredictable condition, the DMN showed a positive relationship with right sensorimotor cortex and a negative relation with the left sensorimotor cortex. These findings indicate a specific modulation on motor processing according to the state of motor readiness. Therefore, connectivity studies using task-based fMRI to probe DMN should consider the influence of motor system modulation when interpreting the results.
Palavras-chave
connectivity, default-mode network, fMRI, motor network, movement preparation, resting state
Referências
  1. Damoiseaux JS, 2006, P NATL ACAD SCI USA, V103, P13848, DOI 10.1073/pnas.0601417103
  2. De Luca M, 2006, NEUROIMAGE, V29, P1359, DOI 10.1016/j.neuroimage.2005.08.035
  3. Fair DA, 2007, NEUROIMAGE, V35, P396, DOI 10.1016/j.neuroimage.2006.11.051
  4. Fassbender C, 2009, BRAIN RES, V1273, P114, DOI 10.1016/j.brainres.2009.02.070
  5. Fox MD, 2005, P NATL ACAD SCI USA, V102, P9673, DOI 10.1073/pnas.0504136102
  6. Fox MD, 2009, J NEUROPHYSIOL, V101, P3270, DOI 10.1152/jn.90777.2008
  7. Garrity AG, 2007, AM J PSYCHIAT, V164, P450, DOI 10.1176/appi.ajp.164.3.450
  8. Greicius MD, 2004, P NATL ACAD SCI USA, V101, P4637, DOI 10.1073/pnas.0308627101
  9. Greicius MD, 2003, P NATL ACAD SCI USA, V100, P253, DOI 10.1073/pnas.0135058100
  10. Harrison BJ, 2008, P NATL ACAD SCI USA, V105, P9781, DOI 10.1073/pnas.0711791105
  11. Horwitz B, 2003, NEUROIMAGE, V19, P466, DOI 10.1016/S1053-8119(03)00112-5
  12. Jenkinson M, 2012, NEUROIMAGE, V62, P782, DOI 10.1016/j.neuroimage.2011.09.015
  13. Jo HJ, 2010, NEUROIMAGE, V52, P571, DOI 10.1016/j.neuroimage.2010.04.246
  14. Just MA, 2004, BRAIN, V127, P1811, DOI 10.1093/brain/awh199
  15. Marchand WR, 2007, NEUROIMAGE, V38, P538, DOI 10.1016/j.neuroimage.2007.07.036
  16. Muller RA, 2007, MENT RETARD DEV D R, V13, P85, DOI 10.1002/mrdd.20141
  17. Murphy K, 2009, NEUROIMAGE, V44, P893, DOI 10.1016/j.neuroimage.2008.09.036
  18. OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
  19. R Development Core Team, 2011, R LANG ENV STAT COMP
  20. Raichle ME, 2001, P NATL ACAD SCI USA, V98, P676, DOI 10.1073/pnas.98.2.676
  21. Shulman GL, 1997, J COGNITIVE NEUROSCI, V9, P648, DOI 10.1162/jocn.1997.9.5.648
  22. Svensen M, 2002, NEUROIMAGE, V16, P551, DOI 10.1006/nimg.2002.1122
  23. Treserras S, 2009, NEUROIMAGE, V48, P207, DOI 10.1016/j.neuroimage.2009.06.016
  24. Vincent JL, 2006, J NEUROPHYSIOL, V96, P3517, DOI 10.1152/jn.00048.2006
  25. Waites AB, 2005, HUM BRAIN MAPP, V24, P59, DOI 10.1002/hbm.20069
  26. Weissenbacher A, 2009, NEUROIMAGE, V47, P1408, DOI 10.1016/j.neuroimage.2009.05.005
  27. Wilson TD, 2014, SCIENCE, V345, P75, DOI 10.1126/science.1250830
  28. Wu CWW, 2008, NEUROIMAGE, V42, P1047, DOI 10.1016/j.neuroimage.2008.05.035