Recombination Located over 2A-2B Junction Ribosome Frameshifting Region of Saffold Cardiovirus

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
LUCHS, Adriana
KOMNINAKIS, Shirley Vasconcelos
LOBATO, Marcia Cristina Alves Brito Sayao
BRUSTULIN, Rafael
CHAGAS, Rogerio Togisaki das
ABRAO, Maria de Fatima Neves dos Santos
SOARES, Cassia Vitoria de Deus Alves
Citação
VIRUSES-BASEL, v.10, n.10, article ID 520, 12p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Here we report the nearly full-length genome of a recombinant Saffold virus strain (SAFV-BR-193) isolated from a child with acute gastroenteritis. Evolutionary analysis performed using all available near-full length Saffold picornavirus genomes showed that the breakpoint found in the Brazilian strain (SAFV-BR-193) is indeed a recombination hotspot. Notably, this hotspot is located just one nucleotide after the ribosomal frameshift GGUUUUU motif in the SAFV genome. Empirical studies will be necessary to determine if this motif also affects the binding affinity of RNA-dependent RNA-polymerase (RdRp) and therefore increases the changes of RdRp swap between molecules during the synthesis of viral genomes.
Palavras-chave
saffold virus, cardiovirus, virome, picornavirus, ribosomal frameshifting, GGUUUUU motif, RNA-dependent RNA-polymerase
Referências
  1. Abed Y, 2008, EMERG INFECT DIS, V14, P834, DOI 10.3201/eid1405.071675
  2. Blinkova O, 2009, J VIROL, V83, P4631, DOI 10.1128/JVI.02085-08
  3. Cotmore SF, 2014, ARCH VIROL, V159, P1239, DOI 10.1007/s00705-013-1914-1
  4. da Costa AC, 2017, EMERG INFECT DIS, V23, P1742, DOI 10.3201/eid2310.170307
  5. Deng XT, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv002
  6. Drexler JF, 2011, EMERG INFECT DIS, V17, P2313, DOI 10.3201/eid1712.111037
  7. Drexler JF, 2010, J GEN VIROL, V91, P1418, DOI 10.1099/vir.0.018887-0
  8. Himeda T, 2012, J VIROL, V86, P1292, DOI 10.1128/JVI.06087-11
  9. Itagaki T, 2018, J MED VIROL, V90, P34, DOI 10.1002/jmv.24928
  10. Jones MS, 2007, J CLIN MICROBIOL, V45, P2144, DOI 10.1128/JCM.00174-07
  11. Larkin MA, 2007, BIOINFORMATICS, V23, P2947, DOI 10.1093/bioinformatics/btm404
  12. Leal E, 2012, J GEN VIROL, V93, P2692, DOI 10.1099/vir.0.045765-0
  13. Loughran G, 2011, P NATL ACAD SCI USA, V108, pE1111, DOI 10.1073/pnas.1102932108
  14. Martin DP, 2015, VIRUS EVOL, V1, DOI 10.1093/ve/vev003
  15. Martins LD, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002651
  16. Naeem A, 2014, J GEN VIROL, V95, P1945, DOI 10.1099/vir.0.066498-0
  17. Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083
  18. Price MN, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009490
  19. Ren LL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074947
  20. Schmidt HA, 2002, BIOINFORMATICS, V18, P502, DOI 10.1093/bioinformatics/18.3.502
  21. Tan SZK, 2017, REV MED VIROL, V27, DOI 10.1002/rmv.1908
  22. Zell R, 2017, J GEN VIROL, V98, P2421, DOI 10.1099/jgv.0.000911
  23. Zhang XA, 2015, SCI REP-UK, V5, DOI 10.1038/srep07704
  24. Zoll J, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000416