The Use of Tree Barks to Monitor Traffic Related Air Pollution: A Case Study in Sao Paulo-Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
SILVA, Gisela T. da
ANDRE, Carmen D. Saldiva de
BARROZO, Ligia V.
SINGER, Julio M.
SAIKI, Mitiko
Citação
FRONTIERS IN ENVIRONMENTAL SCIENCE, v.6, article ID 72, 12p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The analysis of chemical elements in the barks of trees is an alternative procedure to access spatial heterogeneity of traffic related air pollution. However, the role of tree species in the characterization of the variability of airborne pollution is poorly known. We present an observational study conducted in Sao Paulo, Brazil, based on the analysis of 498 trees from three common species: Tipuana tipu, Poincianella pluviosa, and Ligustrum sp.. We considered ANCOVA models to compare the concentrations of Al, Fe, Zn, Cu, Mn, Ba, and Sin the bark (periderm) of trees located close to streets with different levels of traffic intensity controlling for the extension of nearby green areas. The expected trend of increasing elemental concentration in the bark of trees located near streets with greater traffic intensity or close to smaller green areas was only fully evidenced by T. tipu. For instance, the concentrations of Zn, Fe, Al, and Ba increase by 200, 350, 230, and 280% respectively, for trees of this species located near arterial streets when compared to those observed near local streets. On the other hand, the concentrations of Zn, Fe, Al, and Ba are reduced by 41, 45, 50, and 30%, respectively, for trees located near green areas. For P. pluviosa, the capacity to suggest an association between the tree bark concentration of chemical elements with increasing levels of air pollution and presence of green areas was only fully observed for Zn and Cu. For Ligustrum sp., weaker and sometimes non-expected associations between bark concentrations of the chemical elements and either street classification or green area extension were observed. Our results indicate that the choice of species is a key element in the use of tree barks as a biomonitoring tool in urban landscapes. Species like T. tipu, with rough and highly porous bark, are the most appropriate for such purpose.
Palavras-chave
bark morphology, biomonitoring, EDXRF, green areas, tree species
Referências
  1. Andrade MD, 2012, AIR QUAL ATMOS HLTH, V5, P79, DOI 10.1007/s11869-010-0104-5
  2. Baccarelli A, 2009, AM J RESP CRIT CARE, V179, P431, DOI 10.1164/rccm.200812-1808ED
  3. Baklanov A, 2016, ATMOS ENVIRON, V126, P235, DOI 10.1016/j.atmosenv.2015.11.059
  4. Bohm P, 1998, ENVIRON POLLUT, V102, P243, DOI 10.1016/S0269-7491(98)00082-7
  5. Bolund P, 1999, ECOL ECON, V29, P293, DOI 10.1016/S0921-8009(99)00013-0
  6. Bravo MA, 2016, J EXPO SCI ENV EPID, V26, P150, DOI 10.1038/jes.2014.90
  7. Breuste JH, 2013, URBAN ECOSYST, V16, P801, DOI 10.1007/s11252-012-0255-2
  8. Brito JM, 2010, TOXICOL SCI, V116, P67, DOI 10.1093/toxsci/kfq107
  9. Carneiro MFH, 2011, ENVIRON EXP BOT, V72, P272, DOI 10.1016/j.envexpbot.2011.04.001
  10. Catinon M, 2009, ATMOS ENVIRON, V43, P1124, DOI 10.1016/j.atmosenv.2008.11.004
  11. Cheng Z, 2016, ENVIRON INT, V89-90, P212, DOI 10.1016/j.envint.2016.02.003
  12. Companhia de Engenharia de Trafego, 2017, NON TRADITIONAL REF
  13. Albuquerque TTD, 2012, ENVIRON MONIT ASSESS, V184, P969, DOI 10.1007/s10661-011-2013-y
  14. de Miranda RM, 2012, AIR QUAL ATMOS HLTH, V5, P63, DOI 10.1007/s11869-010-0124-1
  15. DETRAN-State Department of Traffic of Sao Paulo, 2017, FROT VEIC SP POR TIP
  16. Efron B, 1982, JACKKNIFE BOOTSTRAP
  17. Ejidike IP, 2015, J ANAL METHODS CHEM, DOI 10.1155/2015/243601
  18. Falla J, 2000, ENVIRON MONIT ASSESS, V64, P627, DOI 10.1023/A:1006385924945
  19. Filho MAP, 2008, BRAZ J MED BIOL RES, V41, P526, DOI 10.1590/S0100-879X2008005000020
  20. GBIF, 2018, GBIF OCC DOWNL, DOI 10.15468/DL.7HK9M6
  21. Gueguen F, 2012, CHEMOSPHERE, V86, P1013, DOI 10.1016/j.chemosphere.2011.11.040
  22. Hetem IG, 2016, ATMOSPHERE-BASEL, V7, DOI 10.3390/atmos7030031
  23. IBGE, 2017, IBGE CID SAO PAUL
  24. Janhall S, 2015, ATMOS ENVIRON, V105, P130, DOI 10.1016/j.atmosenv.2015.01.052
  25. Jeanjean APR, 2016, ATMOS ENVIRON, V147, P1, DOI 10.1016/j.atmosenv.2016.09.033
  26. JUNIKKA L, 1994, IAWA J, V15, P3, DOI 10.1163/22941932-90001338
  27. Kassomenos PA, 2014, ATMOS ENVIRON, V87, P153, DOI 10.1016/j.atmosenv.2014.01.004
  28. KUIK P, 1994, ENVIRON MONIT ASSESS, V32, P207, DOI 10.1007/BF00546277
  29. Kuruneri-Chitepo C, 2011, URBAN FOR URBAN GREE, V10, P247, DOI 10.1016/j.ufug.2011.06.001
  30. Legumes, 2017, VERSION 10 38 20 JUL
  31. Liu Y, 2007, REMOTE SENS ENVIRON, V107, P33, DOI 10.1016/j.rse.2006.05.022
  32. Moreira TCL, 2016, ENVIRON INT, V91, P271, DOI 10.1016/j.envint.2016.03.005
  33. Marc M, 2015, ANAL CHIM ACTA, V853, P116, DOI 10.1016/j.aca.2014.10.018
  34. Masri S, 2015, J AIR WASTE MANAGE, V65, P287, DOI 10.1080/10962247.2014.982307
  35. Mauad T, 2008, AM J RESP CRIT CARE, V178, P721, DOI 10.1164/rccm.200803-436OC
  36. Mazza M, 2013, MYCOSES, V56, P646, DOI 10.1111/myc.12084
  37. Minganti V, 2015, CHEMOSPHERE, V119, P1361, DOI 10.1016/j.chemosphere.2014.02.026
  38. Molina L. T., 2004, JAPCA J AIR WASTE MA, V54, P1, DOI 10.1080/10473289.2004.10471015
  39. Neter J, 2005, APPL LINEAR STAT MOD
  40. Nowak DJ, 2014, ENVIRON POLLUT, V193, P119, DOI 10.1016/j.envpol.2014.05.028
  41. Oliveira S, 2011, BUILD ENVIRON, V46, P2186, DOI 10.1016/j.buildenv.2011.04.034
  42. Pacheco AMG, 2002, ENVIRON POLLUT, V120, P79, DOI 10.1016/S0269-7491(02)00130-6
  43. Perelman P, 2010, REV ARVORE, V34, P505, DOI 10.1590/S0100-67622010000300014
  44. Pope CA, 2009, NEW ENGL J MED, V360, P376, DOI 10.1056/NEJMsa0805646
  45. Pope CA, 2002, JAMA-J AM MED ASSOC, V287, P1132, DOI 10.1001/jama.287.9.1132
  46. Rossini Oliva S, 2006, CHEMOSPHERE, V65, P177, DOI 10.1016/j.chemosphere.2006.03.003
  47. Santos UP, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163225
  48. Sawidis T, 2011, ENVIRON POLLUT, V159, P3560, DOI 10.1016/j.envpol.2011.08.008
  49. Selmi W, 2016, URBAN FOR URBAN GREE, V17, P192, DOI 10.1016/j.ufug.2016.04.010
  50. Shashua-Bar L, 2010, INT J CLIMATOL, V30, P44, DOI 10.1002/joc.1869
  51. Soares AL, 2011, URBAN FOR URBAN GREE, V10, P69, DOI 10.1016/j.ufug.2010.12.001
  52. Szczepaniak K, 2003, ENVIRON RES, V93, P221, DOI 10.1016/S0013-9351(03)00141-5
  53. Tarifa J, 2001, CLIMAS CIDADE SAO PA
  54. Teixeira E, 2014, THESIS
  55. United Nations, 2012, POP DIV WORLD URB PR
  56. Vailshery LS, 2013, URBAN FOR URBAN GREE, V12, P408, DOI 10.1016/j.ufug.2013.03.002
  57. van Donkelaar A, 2016, ENVIRON SCI TECHNOL, V50, P3762, DOI 10.1021/acs.est.5b05833
  58. Van Grieken R. E, 2002, HDB XRAY SPECTROMETR
  59. WHO, 2017, 7 MILL PREM DEATHS A
  60. Wolterbeek B, 2002, ENVIRON POLLUT, V120, P11, DOI 10.1016/S0269-7491(02)00124-0
  61. Wolterbeek HT, 1995, SCI TOTAL ENVIRON, V176, P33, DOI 10.1016/0048-9697(95)04828-6
  62. World Urbanization Prospects, 2017, WORLD URB PROSP POP
  63. Yli-Pelkonen V, 2017, LANDSCAPE URBAN PLAN, V158, P39, DOI 10.1016/j.landurbplan.2016.09.014
  64. YUNUS M, 1990, BOT J LINN SOC, V103, P367, DOI 10.1111/j.1095-8339.1990.tb00196.x
  65. Zanobetti A, 2009, ENVIRON HEALTH-GLOB, V8, DOI 10.1186/1476-069X-8-58