The lack of PI3K gamma favors M1 macrophage polarization and does not prevent kidney diseases progression

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
AMANO, Mariane T.
CASTOLDI, Angela
ANDRADE-OLIVEIRA, Vinicius
LATANCIA, Marcela T.
TERRA, Fernanda F.
CORREA-COSTA, Matheus
BREDA, Cristiane N. S.
FELIZARDO, Raphael J. F.
PEREIRA, Welbert O.
SILVA, Marina B. da
Citação
INTERNATIONAL IMMUNOPHARMACOLOGY, v.64, p.151-161, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Acute kidney injury (AKI) and chronic kidney disease (CKD) are major concerns in worldwide public health, and their pathophysiology involves immune cells activation, being macrophages one of the main players of both processes. It is suggested that metabolic pathways could contribute to macrophage modulation and phosphatidylinositol-3 kinase (PI3K) pathway was shown to be activated in kidneys subjected to ischemia and reperfusion as well as unilateral ureteral obstruction (UUO). Although PI3K inhibition is mostly associated with anti-inflammatory response, its use in kidney injuries has been shown controversial results, which indicates the need for further studies. Our aim was to unveil the role of PI3K gamma in macrophage polarization and in kidney diseases development. We analyzed bone-marrow macrophages polarization from wild-type (WT) and PI3K gamma knockout (PI3K KO) animals. We observed increased expression of M1 (CD86, CCR7, iNOS, TNF, CXCL9, CXCL10, IL-12 and IL-23) and decreased of M2 (CD206, Arg-1, FIZZ1 and YM1) markers in the lack of PI3K gamma. And this modulation was accompanied by higher levels of inflammatory cytokines in PI3K KO M1 cells. PI3K KO mice had increased M1 in steady state kidneys, and no protection was observed in these mice after acute and chronic kidney insults. On the contrary, they presented higher levels of protein-to-creatinine ratio and Kim-1 expression and increased tubular injury. In conclusion, our findings demonstrated that the lack of PI3K gamma favors M1 macrophages polarization providing an inflammatory-prone environment, which does not prevent kidney diseases progression.
Palavras-chave
PI3K, Macrophage, Acute kidney injury, Chronic kidney disease
Referências
  1. Ameriks MK, 2009, CURR TOP MED CHEM, V9, P738, DOI 10.2174/156802609789044434
  2. Braga TT, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00602
  3. Byles V, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3834
  4. Cao Q, 2015, PHYSIOLOGY, V30, P183, DOI 10.1152/physiol.00046.2014
  5. Chandra A, 2017, Indian J Nephrol, V27, P406, DOI 10.4103/ijn.IJN_304_16
  6. Chen GC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033626
  7. DEFORGE LE, 1991, BIOCHEM BIOPH RES CO, V174, P18, DOI 10.1016/0006-291X(91)90478-P
  8. Delgoffe GM, 2011, NAT IMMUNOL, V12, P295, DOI 10.1038/ni.2005
  9. Fantus D, 2016, NAT REV NEPHROL, V12, P587, DOI 10.1038/nrneph.2016.108
  10. Franco-Esteve A, 2012, NEFROLOGIA, V32, P631, DOI 10.3265/Nefrologia.pre2012.Jun.11314
  11. Gordon S, 2010, IMMUNITY, V32, P593, DOI 10.1016/j.immuni.2010.05.007
  12. Humphreys BD, 2013, J CLIN INVEST, V123, P4023, DOI 10.1172/JCI45361
  13. Izzedine H, 2005, NEW ENGL J MED, V353, P2088, DOI 10.1056/NEJM200511103531922
  14. Jang HR, 2015, NAT REV NEPHROL, V11, P88, DOI 10.1038/nrneph.2014.180
  15. Jha V, 2013, LANCET, V382, P260, DOI 10.1016/S0140-6736(13)60687-X
  16. Jiang HR, 2002, J LEUKOCYTE BIOL, V72, P978
  17. Jin YM, 2013, LAB INVEST, V93, P801, DOI 10.1038/labinvest.2013.64
  18. Jo SK, 2006, NEPHROL DIAL TRANSPL, V21, P1231, DOI 10.1093/ndt/gfk047
  19. Kim N, 2015, TRANSPLANTATION, V99, P2070, DOI 10.1097/TP.0000000000000742
  20. Kitamoto K, 2009, J PHARMACOL SCI, V111, P285, DOI 10.1254/jphs.09227FP
  21. Kurebayashi Y, 2012, CELL REPORTS, V1, P360, DOI 10.1016/j.celrep.2012.02.007
  22. Lee S, 2011, J AM SOC NEPHROL, V22, P317, DOI 10.1681/ASN.2009060615
  23. Lieberthal W, 2006, TRANSPLANTATION, V82, P17, DOI 10.1097/01.tp.0000225772.2275725e
  24. Liu HB, 2015, OXID MED CELL LONGEV, V2015
  25. Liu L, 2015, MOL MED REP, V12, P7933, DOI 10.3892/mmr.2015.4426
  26. Ma Seong Kwon, 2013, Chonnam Med J, V49, P108, DOI 10.4068/cmj.2013.49.3.108
  27. Masoud GN, 2015, ACTA PHARM SIN B, V5, P378, DOI [10.1016/j.apsb.2015.05.007, 10.1016/j.apsh.2015.05.007]
  28. Murray PJ, 2017, ANNU REV PHYSIOL, V79, P541, DOI 10.1146/annurev-physiol-022516-034339
  29. Mwaikambo BR, 2009, J BIOL CHEM, V284, P26695, DOI 10.1074/jbc.M109.033480
  30. Pan BX, 2015, CELL PHYSIOL BIOCHEM, V35, P1062, DOI 10.1159/000373932
  31. Park YC, 1997, BIOCHEM BIOPH RES CO, V240, P692, DOI 10.1006/bbrc.1997.7722
  32. Paschoal VA, 2017, IMMUNOBIOLOGY, V222, P261, DOI 10.1016/j.imbio.2016.09.014
  33. Patton DT, 2006, J IMMUNOL, V177, P6598, DOI 10.4049/jimmunol.177.10.6598
  34. Pennathur S, 2015, AM J PATHOL, V185, P2232, DOI 10.1016/j.ajpath.2015.04.016
  35. Perl A, 2016, NAT REV RHEUMATOL, V12, P169, DOI 10.1038/nrrheum.2015.172
  36. Qin J, 2013, NEPHROLOGY, V18, P690, DOI 10.1111/nep.12128
  37. Satake A, 2008, KIDNEY INT, V73, P308, DOI 10.1038/sj.ki.5002690
  38. Steinbach EC, 2014, J IMMUNOL, V192, P3958, DOI 10.4049/jimmunol.1301533
  39. Tarique AA, 2015, AM J RESP CELL MOL, V53, P676, DOI 10.1165/rcmb.2015-0012OC
  40. Tateishi Y, 2015, J PHARMACOL SCI, V127, P181, DOI 10.1016/j.jphs.2014.12.011
  41. Vogelbacher R, 2007, TRANSPLANTATION, V84, P1492, DOI 10.1097/01.tp.0000282866.92367.99
  42. Wang C, 2014, BIOCHEM BIOPH RES CO, V447, P57, DOI 10.1016/j.bbrc.2014.03.103
  43. Wang W, 2016, BJU INT, V118, P145, DOI 10.1111/bju.13219
  44. Weichhart T, 2008, ANN RHEUM DIS, V67, P70, DOI 10.1136/ard.2008.098459
  45. Xie LP, 2006, NEPHROLOGY, V11, P207, DOI 10.1111/j.1440-1797.2006.00558.x
  46. Yang FJ, 2015, J HUAZHONG U SCI-MED, V35, P58, DOI 10.1007/s11596-015-1389-2
  47. Yoon HE, 2014, J KOREAN MED SCI, V29, P230, DOI 10.3346/jkms.2014.29.2.230
  48. Zhang J, 2015, NEPHROLOGY, V20, P266, DOI 10.1111/nep.12384
  49. Zhang J, 2013, INT J CLIN EXP PATHO, V6, P2366
  50. Zhang M, 2015, CELL DEATH DIS, V6, DOI 10.1038/cddis.2015.206
  51. Zhang WJ, 2011, J IMMUNOL, V187, P1764, DOI 10.4049/jimmunol.1002315
  52. Zhou J, 2017, CELL PHYSIOL BIOCHEM, V43, P1841, DOI 10.1159/000484070
  53. Zhu JL, 2015, INT J CLIN EXP MED, V8, P2038
  54. Zotes TM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072674