Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios

Carregando...
Imagem de Miniatura
Citações na Scopus
104
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
VICEDO-CABRERA, Ana Maria
GUO, Yuming
SERA, Francesco
HUBER, Veronika
SCHLEUSSNER, Carl-Friedrich
MITCHELL, Dann
TONG, Shilu
SALDIVA, Paulo Hilario Nascimento
LAVIGNE, Eric
Citação
CLIMATIC CHANGE, v.150, n.3-4, p.391-402, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The Paris Agreement binds all nations to undertake ambitious efforts to combat climate change, with the commitment to hold warming well below 2 degrees C in global mean temperature (GMT), relative to pre-industrial levels, and to pursue efforts to limit warming to 1.5 degrees C. The 1.5 degrees C limit constitutes an ambitious goal for which greater evidence on its benefits for health would help guide policy and potentially increase the motivation for action. Here we contribute to this gap with an assessment on the potential health benefits, in terms of reductions in temperature-related mortality, derived from the compliance to the agreed temperature targets, compared to more extreme warming scenarios. We performed a multi-region analysis in 451 locations in 23 countries with different climate zones, and evaluated changes in heat and cold-related mortality under scenarios consistent with the Paris Agreement targets (1.5 and 2 degrees C) and more extreme GMT increases (3 and 4 degrees C), and under the assumption of no changes in demographic distribution and vulnerability. Our results suggest that limiting warming below 2 degrees C could prevent large increases in temperature-related mortality in most regions worldwide. The comparison between 1.5 and 2 degrees C is more complex and characterized by higher uncertainty, with geographical differences that indicate potential benefits limited to areas located in warmer climates, where direct climate change impacts will be more discernible.
Palavras-chave
Climate change, Mortality, Temperature, Projections
Referências
  1. Benmarhnia T, 2014, ENVIRON HEALTH PERSP, V122, P1293, DOI 10.1289/ehp.1306954
  2. Ebi KL, 2014, GLOBAL HEALTH ACTION, V7, P1, DOI 10.3402/gha.v7.24154
  3. Gasparrini Antonio, 2017, Lancet Planet Health, V1, pe360, DOI 10.1016/S2542-5196(17)30156-0
  4. Gasparrini A, 2015, LANCET, V386, P369, DOI 10.1016/S0140-6736(14)62114-0
  5. Gasparrini A, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-55
  6. Gosling SN, 2017, ENVIRON HEALTH PERSP, V125, DOI 10.1289/EHP634
  7. Harrington LJ, 2016, ENVIRON RES LETT, V11, DOI 10.1088/1748-9326/11/5/055007
  8. James R, 2017, WIRES CLIM CHANGE, V8, DOI 10.1002/wcc.457
  9. Jones CD, 2011, GEOSCI MODEL DEV, V4, P543, DOI 10.5194/gmd-4-543-2011
  10. Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130
  11. Lelieveld J, 2016, CLIMATIC CHANGE, V137, P245, DOI 10.1007/s10584-016-1665-6
  12. Mazdiyasni O, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1700066
  13. Mignot J, 2013, CLIM DYNAM, V40, P2089, DOI 10.1007/s00382-013-1720-1
  14. Mora C, 2017, NAT CLIM CHANGE, V7, P501, DOI [10.1038/nclimate3322, 10.1038/NCLIMATE3322]
  15. Pachauri R. K., 2014, IPCC CLIMATE CHANGE
  16. Russo S, 2016, ENVIRON RES LETT, V11, DOI 10.1088/1748-9326/11/5/054016
  17. Sanderson M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180369
  18. Schleussner CF, 2016, EARTH SYST DYNAM, V7, P327, DOI 10.5194/esd-7-327-2016
  19. Seneviratne SI, 2018, NATURE, V558, P41, DOI 10.1038/s41586-018-0181-4
  20. Seneviratne SI, 2016, NATURE, V529, P477, DOI 10.1038/nature16542
  21. Smith KR, 2014, CLIMATE CHANGE 2014: IMPACTS, ADAPTATION, AND VULNERABILITY, PT A: GLOBAL AND SECTORAL ASPECTS, P709
  22. UNFCCC, 2015, REPORT OF THE STRUCT
  23. UNFCCC, 2015, C PART ITS 21 SESS H
  24. Wang Y, 2016, ENVIRON INT, V94, P141, DOI 10.1016/j.envint.2016.05.008
  25. Watanabe S, 2011, GEOSCI MODEL DEV, V4, P845, DOI 10.5194/gmd-4-845-2011