Distinct urinary glycoprotein signatures in prostate cancer patients

Carregando...
Imagem de Miniatura
Citações na Scopus
32
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
IMPACT JOURNALS LLC
Autores
KAWAHARA, R.
ROSA-FERNANDES, L.
QUINA, D.
SCHWäMMLE, V.
THAYSEN-ANDERSEN, M.
Citação
ONCOTARGET, v.9, n.69, p.33077-33097, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Novel biomarkers are needed to complement prostate specific antigen (PSA) in prostate cancer (PCa) diagnostic screening programs. Glycoproteins represent a hitherto largely untapped resource with a great potential as specific and sensitive tumor biomarkers due to their abundance in bodily fluids and their dynamic and cancer-associated glycosylation. However, quantitative glycoproteomics strategies to detect potential glycoprotein cancer markers from complex biospecimen are only just emerging. Here, we describe a glycoproteomics strategy for deep quantitative mapping of N- and O-glycoproteins in urine with a view to investigate the diagnostic value of the glycoproteome to discriminate PCa from benign prostatic hyperplasia (BPH), two conditions that remain difficult to clinically stratify. Total protein extracts were obtained, concentrated and digested from urine of six PCa patients (Gleason score 7) and six BPH patients. The resulting peptide mixtures were TMT-labeled and mixed prior to a multi-faceted sample processing including hydrophilic interaction liquid chromatography (HILIC) and titanium dioxide SPE based enrichment, endo-/exoglycosidase treatment and HILIC-HPLC pre-fractionation. The isolated N- and O-glycopeptides were detected and quantified using high resolution mass spectrometry. We accurately quantified 729 N-glycoproteins spanning 1,310 unique N-glycosylation sites and observed 954 and 965 unique intact N- and O-glycopeptides, respectively, across the two disease conditions. Importantly, a panel of 56 intact N-glycopeptides perfectly discriminated PCa and BPH (ROC: AUC = 1). This study has generated a panel of intact glycopeptides that has a potential for PCa detection. © Kawahara et al.
Palavras-chave
Glycopeptide, Glycoproteomics, Prostate cancer, TMT-labeling, Urine
Referências
  1. Siegel, R.L., Miller, K.D., Jemal, A., Cancer statistics, 2016 (2016) CA Cancer J Clin, 66, pp. 7-30. , https://doi.org/10.3322/caac.21332
  2. Prensner, J.R., Rubin, M.A., Wei, J.T., Chinnaiyan, A.M., Beyond PSA: the next generation of prostate cancer biomarkers (2012) Sci Transl Med, 4, p. 127rv3. , https://doi.org/10.1126/scitranslmed.3003180
  3. Adhyam, M., Gupta, A.K., A Review on the Clinical Utility of PSA in Cancer Prostate (2012) Indian J Surg Oncol, 3, pp. 120-129. , https://doi.org/10.1007/s13193-012-0142-6
  4. Dijkstra, S., Mulders, P.F., Schalken, J.A., Clinical use of novel urine and blood based prostate cancer biomarkers: a review (2014) Clin Biochem, 47, pp. 889-896. , https://doi.org/10.1016/j.clinbiochem.2013.10.023
  5. Jamaspishvili, T., Kral, M., Khomeriki, I., Student, V., Kolar, Z., Bouchal, J., Urine markers in monitoring for prostate cancer (2010) Prostate Cancer Prostatic Dis, 13, pp. 12-19. , https://doi.org/10.1038/pcan.2009.31
  6. Wood, S.L., Knowles, M.A., Thompson, D., Selby, P.J., Banks, R.E., Proteomic studies of urinary biomarkers for prostate, bladder and kidney cancers (2013) Nat Rev Urol, 10, pp. 206-218. , https://doi.org/10.1038/nrurol.2013.24
  7. Haj-Ahmad, T.A., Abdalla, M.A., Haj-Ahmad, Y., Potential Urinary Protein Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients (2014) J Cancer, 5, pp. 103-114. , https://doi.org/10.7150/jca.6890
  8. Jedinak, A., Curatolo, A., Zurakowski, D., Dillon, S., Bhasin, M.K., Libermann, T.A., Roy, R., Moses, M.A., Novel non-invasive biomarkers that distinguish between benign prostate hyperplasia and prostate cancer (2015) BMC Cancer, 15, p. 259. , https://doi.org/10.1186/s12885-015-1284-z
  9. Durand, G., Seta, N., Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring (2000) Clin Chem, 46, pp. 795-805
  10. Drake, P.M., Cho, W., Li, B., Prakobphol, A., Johansen, E., Anderson, N.L., Regnier, F.E., Fisher, S.J., Sweetening the pot: adding glycosylation to the biomarker discovery equation (2010) Clin Chem, 56, pp. 223-236. , https://doi.org/10.1373/clinchem.2009.136333
  11. Chen, K., Gentry-Maharaj, A., Burnell, M., Steentoft, C., Marcos-Silva, L., Mandel, U., Jacobs, I., Blixt, O., Microarray Glycoprofiling of CA125 improves differential diagnosis of ovarian cancer (2013) J Proteome Res, 12, pp. 1408-1418. , https://doi.org/10.1021/pr3010474
  12. Zhang, D., Chen, B., Wang, Y., Xia, P., He, C., Liu, Y., Zhang, R., Li, Z., Disease-specific IgG Fc N-glycosylation as personalized biomarkers to differentiate gastric cancer from benign gastric diseases (2016) Sci Rep, 6, p. 25957. , https://doi.org/10.1038/srep25957
  13. Kirwan, A., Utratna, M., O'Dwyer, M.E., Joshi, L., Kilcoyne, M., Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics (2015) Biomed Res Int, 2015. , https://doi.org/10.1155/2015/490531
  14. Belický, Š., Tkac, J., Can glycoprofiling be helpful in detecting prostate cancer? (2015) Chem Zvesti, 69, pp. 90-111. , https://doi.org/10.1515/chempap-2015-0052
  15. Vermassen, T., Van Praet, C., Poelaert, F., Lumen, N., Decaestecker, K., Hoebeke, P., Van Belle, S., Delanghe, J., Diagnostic accuracy of urinary prostate protein glycosylation profiling in prostatitis diagnosis (2015) Biochem Med (Zagreb), 25, pp. 439-449. , https://doi.org/10.11613/BM.2015.045
  16. Pinho, S.S., Reis, C.A., Glycosylation in cancer: mechanisms and clinical implications (2015) Nat Rev Cancer, 15, pp. 540-555. , https://doi.org/10.1038/nrc3982
  17. Munkley, J., Elliott, D.J., Hallmarks of glycosylation in cancer (2016) Oncotarget, 7, pp. 35478-35489. , https://doi.org/10.18632/oncotarget.8155
  18. Munkley, J., Mills, I.G., Elliott, D.J., The role of glycans in the development and progression of prostate cancer (2016) Nat Rev Urol, 13, pp. 324-333. , https://doi.org/10.1038/nrurol.2016.65
  19. Vermassen, T., Van Praet, C., Lumen, N., Decaestecker, K., Vanderschaeghe, D., Callewaert, N., Villeirs, G., Delanghe, J., Urinary prostate protein glycosylation profiling as a diagnostic biomarker for prostate cancer (2015) Prostate, 75, pp. 314-322. , https://doi.org/10.1002/pros.22918
  20. Shah, P., Wang, X., Yang, W., Toghi Eshghi, S., Sun, S., Hoti, N., Chen, L., Zhang, H., Integrated Proteomic and Glycoproteomic Analyses of Prostate Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and Glycosylation (2015) Mol Cell Proteomics, 14, pp. 2753-2763. , https://doi.org/10.1074/mcp.M115.047928
  21. Liu, Y., Chen, J., Sethi, A., Li, Q.K., Chen, L., Collins, B., Gillet, L.C., Aebersold, R., Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness (2014) Mol Cell Proteomics, 13, pp. 1753-1768. , https://doi.org/10.1074/mcp.M114.038273
  22. Cima, I., Schiess, R., Wild, P., Kaelin, M., Schüffler, P., Lange, V., Picotti, P., Wyler, S., Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer (2011) Proc Natl Acad Sci U S A, 108, pp. 3342-3347. , https://doi.org/10.1073/pnas.1013699108
  23. Thaysen-Andersen, M., Packer, N.H., Advances in LC-MS/ MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N-and O-glycoproteome (2014) Biochim Biophys Acta, 1844, pp. 1437-1452. , https://doi.org/10.1016/j.bbapap.2014.05.002
  24. Thaysen-Andersen, M., Packer, N.H., Schulz, B.L., Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease (2016) Mol Cell Proteomics, 15, pp. 1773-1790. , https://doi.org/10.1074/mcp.O115.057638
  25. Cao, L., Qu, Y., Zhang, Z., Wang, Z., Prytkova, I., Wu, S., Intact glycopeptide characterization using mass spectrometry (2016) Expert Rev Proteomics, 13, pp. 513-522. , https://doi.org/10.1586/14789450.2016.1172965
  26. Tsai, P.L., Chen, S.F., A Brief Review of Bioinformatics Tools for Glycosylation Analysis by Mass Spectrometry (2017) Mass Spectrom (Tokyo), 6, p. S0064. , https://doi.org/10.5702/massspectrometry.S0064
  27. Kawahara, R., Saad, J., Angeli, C.B., Palmisano, G., Site-specific characterization of N-linked glycosylation in human urinary glycoproteins and endogenous glycopeptides (2016) Glycoconj J, 33, pp. 937-951. , https://doi.org/10.1007/s10719-016-9677-z
  28. Larsen, M.R., Jensen, S.S., Jakobsen, L.A., Heegaard, N.H., Exploring the sialiome using titanium dioxide chromatography and mass spectrometry (2007) Mol Cell Proteomics, 6, pp. 1778-1787. , https://doi.org/10.1074/mcp.M700086-MCP200
  29. Palmisano, G., Lendal, S.E., Engholm-Keller, K., Leth-Larsen, R., Parker, B.L., Larsen, M.R., Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry (2010) Nat Protoc, 5, pp. 1974-1982. , https://doi.org/10.1038/nprot.2010.167
  30. Mysling, S., Palmisano, G., Højrup, P., Thaysen-Andersen, M., Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics (2010) Anal Chem, 82, pp. 5598-5609. , https://doi.org/10.1021/ac100530w
  31. Thaysen-Andersen, M., Mysling, S., Højrup, P., Site-specific glycoprofiling of N-linked glycopeptides using MALDITOF MS: strong correlation between signal strength and glycoform quantities (2009) Anal Chem, 81, pp. 3933-3943. , https://doi.org/10.1021/ac900231w
  32. Bern, M.W., Kil, Y.J., Two-dimensional target decoy strategy for shotgun proteomics (2011) J Proteome Res, 10, pp. 5296-5301. , https://doi.org/10.1021/pr200780j
  33. Palmisano, G., Parker, B.L., Engholm-Keller, K., Lendal, S.E., Kulej, K., Schulz, M., Schwämmle, V., Larsen, M.R., A novel method for the simultaneous enrichment, identification, and quantification of phosphopeptides and sialylated glycopeptides applied to a temporal profile of mouse brain development (2012) Mol Cell Proteomics, 11, pp. 1191-1202. , https://doi.org/10.1074/mcp.M112.017509
  34. Houel, S., Hilliard, M., Yu, Y.Q., McLoughlin, N., Martin, S.M., Rudd, P.M., Williams, J.P., Chen, W., N-and O-glycosylation analysis of etanercept using liquid chromatography and quadrupole time-of-flight mass spectrometry equipped with electron-transfer dissociation functionality (2014) Anal Chem, 86, pp. 576-584. , https://doi.org/10.1021/ac402726h
  35. Maupin, K.A., Liden, D., Haab, B.B., The fine specificity of mannose-binding and galactose-binding lectins revealed using outlier motif analysis of glycan array data (2012) Glycobiology, 22, pp. 160-169. , https://doi.org/10.1093/glycob/cwr128
  36. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K., limma powers differential expression analyses for RNA-sequencing and microarray studies (2015) Nucleic Acids Res, 43. , https://doi.org/10.1093/nar/gkv007
  37. Peterson, A.C., Russell, J.D., Bailey, D.J., Westphall, M.S., Coon, J.J., Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics (2012) Mol Cell Proteomics, 11, pp. 1475-1488. , https://doi.org/10.1074/mcp.O112.020131
  38. Campbell, M.P., Peterson, R., Mariethoz, J., Gasteiger, E., Akune, Y., Aoki-Kinoshita, K.F., Lisacek, F., Packer, N.H., UniCarbKB: building a knowledge platform for glycoproteomics (2014) Nucleic Acids Res, 42. , https://doi.org/10.1093/nar/gkt1128
  39. Samraj, A.N., Läubli, H., Varki, N., Varki, A., Involvement of a non-human sialic Acid in human cancer (2014) Front Oncol, 4, p. 33
  40. Davalieva, K., Kiprijanovska, S., Komina, S., Petrusevska, G., Zografska, N.C., Polenakovic, M., Proteomics analysis of urine reveals acute phase response proteins as candidate diagnostic biomarkers for prostate cancer (2015) Proteome Sci, 13, p. 2. , https://doi.org/10.1186/s12953-014-0059-9
  41. Xu, C., Jung, M., Burkhardt, M., Stephan, C., Schnorr, D., Loening, S., Jung, K., Kristiansen, G., Increased CD59 protein expression predicts a PSA relapse in patients after radical prostatectomy (2005) Prostate, 62, pp. 224-232. , https://doi.org/10.1002/pros.20134
  42. Jarvis, G.A., Li, J., Hakulinen, J., Brady, K.A., Nordling, S., Dahiya, R., Meri, S., Expression and function of the complement membrane attack complex inhibitor protectin (CD59) in human prostate cancer (1997) Int J Cancer, 71, pp. 1049-1055. , https://doi.org/10.1002/(SICI)1097-0215(19970611)71:6<1049::AID-IJC22>3.0.CO;2-7
  43. Saraon, P., Musrap, N., Cretu, D., Karagiannis, G.S., Batruch, I., Smith, C., Drabovich, A.P., Diamandis, E.P., Proteomic profiling of androgen-independent prostate cancer cell lines reveals a role for protein S during the development of high grade and castration-resistant prostate cancer (2012) J Biol Chem, 287, pp. 34019-34031. , https://doi.org/10.1074/jbc.M112.384438
  44. Rizzi, F., Bettuzzi, S., Targeting Clusterin in prostate cancer (2008) J Physiol Pharmacol, 59, pp. 265-274
  45. Pins, M.R., Fiadjoe, J.E., Korley, F., Wong, M., Rademaker, A.W., Jovanovic, B., Yoo, T.K., Lee, C., Clusterin as a possible predictor for biochemical recurrence of prostate cancer following radical prostatectomy with intermediate Gleason scores: a preliminary report (2004) Prostate Cancer Prostatic Dis, 7, pp. 243-248. , https://doi.org/10.1038/sj.pcan.4500722
  46. Halim, A., Nilsson, J., Rüetschi, U., Hesse, C., Larson, G., Human urinary glycoproteomics
  47. attachment site specific analysis of N-and O-linked glycosylations by CID and ECD (2012) Mol Cell Proteomics, 11. , https://doi.org/10.1074/mcp.M111.013649
  48. Saraswat, M., Joenväära, S., Musante, L., Peltoniemi, H., Holthofer, H., Renkonen, R., N-linked (N-) glycoproteomics of urinary exosomes [Corrected] (2015) Mol Cell Proteomics, 14, pp. 263-276. , https://doi.org/10.1074/mcp.M114.040345.Erratumin:N-linked(N-)GlycoproteomicsofUrinaryExosomes.[MolCellProteomics.2015]
  49. Nagaraj, N., Mann, M., Quantitative analysis of the intra-and inter-individual variability of the normal urinary proteome (2011) J Proteome Res, 10, pp. 637-645. , https://doi.org/10.1021/pr100835s
  50. Maes, E., Valkenborg, D., Baggerman, G., Willems, H., Landuyt, B., Schoofs, L., Mertens, I., Determination of variation parameters as a crucial step in designing TMT-based clinical proteomics experiments (2015) PLoS One, 10. , https://doi.org/10.1371/journal.pone.0120115
  51. Ahrné, E., Glatter, T., Viganò, C., Schubert, C., Nigg, E.A., Schmidt, A., Evaluation and Improvement of Quantification Accuracy in Isobaric Mass Tag-Based Protein Quantification Experiments (2016) J Proteome Res, 15, pp. 2537-2547. , https://doi.org/10.1021/acs.jproteome.6b00066
  52. Karp, N.A., Huber, W., Sadowski, P.G., Charles, P.D., Hester, S.V., Lilley, K.S., Addressing accuracy and precision issues in iTRAQ quantitation (2010) Mol Cell Proteomics, 9, pp. 1885-1897. , https://doi.org/10.1074/mcp.M900628-MCP200
  53. Christoforou, A.L., Lilley, K.S., Isobaric tagging approaches in quantitative proteomics: the ups and downs (2012) Anal Bioanal Chem, 404, pp. 1029-1037. , https://doi.org/10.1007/s00216-012-6012-9
  54. Cox, J., Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification (2008) Nat Biotechnol, 26, pp. 1367-1372. , https://doi.org/10.1038/nbt.1511
  55. Fuster, M.M., Esko, J.D., The sweet and sour of cancer: glycans as novel therapeutic targets (2005) Nat Rev Cancer, 5, pp. 526-542. , https://doi.org/10.1038/nrc1649
  56. Padler-Karavani, V., Aiming at the sweet side of cancer: aberrant glycosylation as possible target for personalizedmedicine (2014) Cancer Lett, 352, pp. 102-112. , https://doi.org/10.1016/j.canlet.2013.10.005
  57. Meany, D.L., Chan, D.W., Aberrant glycosylation associated with enzymes as cancer biomarkers (2011) Clin Proteomics, 8, p. 7. , https://doi.org/10.1186/1559-0275-8-7
  58. Wang, X., Chen, J., Li, Q.K., Peskoe, S.B., Zhang, B., Choi, C., Platz, E.A., Zhang, H., Overexpression of a (1,6) fucosyltransferase associated with aggressive prostate cancer (2014) Glycobiology, 24, pp. 935-944. , https://doi.org/10.1093/glycob/cwu051
  59. Vermassen, T., Van Praet, C., Vanderschaeghe, D., Maenhout, T., Lumen, N., Callewaert, N., Hoebeke, P., Delanghe, J., Capillary electrophoresis of urinary prostate glycoproteins assists in the diagnosis of prostate cancer (2014) Electrophoresis, 35, pp. 1017-1024. , https://doi.org/10.1002/elps.201300332
  60. Meany, D.L., Zhang, Z., Sokoll, L.J., Zhang, H., Chan, D.W., Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns (2009) J Proteome Res, 8, pp. 613-619. , https://doi.org/10.1021/pr8007539
  61. Barfeld, S.J., East, P., Zuber, V., Mills, I.G., Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes (2014) BMC Med Genomics, 7, p. 513. , https://doi.org/10.1186/s12920-014-0074-9
  62. Tabarés, G., Radcliffe, C.M., Barrabés, S., Ramírez, M., Aleixandre, R.N., Hoesel, W., Dwek, R.A., de Llorens, R., Different glycan structures in prostatespecific antigen from prostate cancer sera in relation to seminal plasma PSA (2006) Glycobiology, 16, pp. 132-145. , https://doi.org/10.1093/glycob/cwj042
  63. Llop, E., Ferrer-Batallé, M., Barrabés, S., Guerrero, P.E., Ramírez, M., Saldova, R., Rudd, P.M., Peracaula, R., Improvement of Prostate Cancer Diagnosis by Detecting PSA Glycosylation-Specific Changes (2016) Theranostics, 6, pp. 1190-1204. , https://doi.org/10.7150/thno.15226
  64. Ohyama, C., Hosono, M., Nitta, K., Oh-eda, M., Yoshikawa, K., Habuchi, T., Arai, Y., Fukuda, M., Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy (2004) Glycobiology, 14, pp. 671-679. , https://doi.org/10.1093/glycob/cwh071
  65. Babiker, A.A., Nilsson, B., Ronquist, G., Carlsson, L., Ekdahl, K.N., Transfer of functional prostasomal CD59 of metastatic prostatic cancer cell origin protects cells against complement attack (2005) Prostate, 62, pp. 105-114. , https://doi.org/10.1002/pros.20102
  66. Rudd, P.M., Morgan, B.P., Wormald, M.R., Harvey, D.J., van den Berg, C.W., Davis, S.J., Ferguson, M.A., Dwek, R.A., The glycosylation of the complement regulatory protein, human erythrocyte CD59 (1997) J Biol Chem, 272, pp. 7229-7244. , https://doi.org/10.1074/jbc.272.11.7229
  67. Tokugawa, Y., Kunishige, I., Kubota, Y., Shimoya, K., Nobunaga, T., Kimura, T., Saji, F., Hayaishi, O., Lipocalin-type prostaglandin D synthase in human male reproductive organs and seminal plasma (1998) Biol Reprod, 58, pp. 600-607. , https://doi.org/10.1095/biolreprod58.2.600
  68. Jørgensen, A., Nielsen, J.E., Nielsen, B.F., Morthorst, J.E., Bjerregaard, P., Leffers, H., Expression of prostaglandin synthases (pgds and pges) during zebrafish gonadal differentiation (2010) Comp Biochem Physiol A Mol Integr Physiol, 157, pp. 102-108. , https://doi.org/10.1016/j.cbpa.2010.03.014
  69. Moniot, B., Farhat, A., Aritake, K., Declosmenil, F., Nef, S., Eguchi, N., Urade, Y., Boizet-Bonhoure, B., Hematopoietic prostaglandin D synthase (H-Pgds) is expressed in the early embryonic gonad and participates to the initial nuclear translocation of the SOX9 protein (2011) Dev Dyn, 240, pp. 2335-2343. , https://doi.org/10.1002/dvdy.22726
  70. Badawi, A.F., The role of prostaglandin synthesis in prostate cancer (2000) BJU Int, 85, pp. 451-462. , https://doi.org/10.1046/j.1464-410x.2000.00507.x
  71. Ragolia, L., Hall, C.E., Palaia, T., Post-translational modification regulates prostaglandin D2 synthase apoptotic activity: characterization by site-directed mutagenesis (2007) Prostaglandins Other Lipid Mediat, 83, pp. 25-32. , https://doi.org/10.1016/j.prostaglandins.2006.09.006
  72. Kim, Y., Jeon, J., Mejia, S., Yao, C.Q., Ignatchenko, V., Nyalwidhe, J.O., Gramolini, A.O., Kislinger, T., Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer (2016) Nat Commun, 7, p. 11906. , https://doi.org/10.1038/ncomms11906
  73. Song, E., Pyreddy, S., Mechref, Y., Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry (2012) Rapid Commun Mass Spectrom, 26, pp. 1941-1954. , https://doi.org/10.1002/rcm.6290
  74. de la Fouchardière, C., Flechon, A., Droz, J.P., Coagulopathy in prostate cancer (2003) Neth J Med, 61, pp. 347-354
  75. Navarro, M., Ruiz, I., Martín, G., Cruz, J.J., Patient with disseminated intravascular coagulation as the first manifestation of adenocarcinoma of the prostate Risks of prostatic biopsy (2006) Prostate Cancer Prostatic Dis, 9, pp. 190-191. , https://doi.org/10.1038/sj.pcan.4500854
  76. Adamson, A.S., Francis, J.L., Witherow, R.O., Snell, M.E., Coagulopathy in the prostate cancer patient: prevalence and clinical relevance (1993) Ann R Coll Surg Engl, 75, pp. 100-104
  77. Duran, I., Tannock, I.F., Disseminated intravascular coagulation as the presenting sign of metastatic prostate cancer (2006) J Gen Intern Med, 21, pp. C6-C8. , https://doi.org/10.1111/j.1525-1497.2006.00506.x
  78. Ong, S.Y., Taverna, J., Jokerst, C., Enzler, T., Hammode, E., Rogowitz, E., Green, M.R., Babiker, H.M., Prostate Cancer-Associated Disseminated Intravascular Coagulation with Excessive Fibrinolysis Treated with Degarelix (2015) Case Rep Oncol Med, 2015. , https://doi.org/10.1155/2015/212543
  79. Pio, R., Corrales, L., Lambris, J.D., The role of complement in tumor growth (2014) Adv Exp Med Biol, 772, pp. 229-262. , https://doi.org/10.1007/978-1-4614-5915-6_11
  80. Pio, R., Ajona, D., Lambris, J.D., Complement inhibition in cancer therapy (2013) Semin Immunol, 25, pp. 54-64. , https://doi.org/10.1016/j.smim.2013.04.001
  81. Kawahara, R., Meirelles, G.V., Heberle, H., Domingues, R.R., Granato, D.C., Yokoo, S., Canevarolo, R.R., Barbuto, J.A., Integrative analysis to select cancer candidate biomarkers to targeted validation (2015) Oncotarget, 6, pp. 43635-43652. , https://doi.org/10.18632/oncotarget.6018
  82. Manning, M.L., Williams, S.A., Jelinek, C.A., Kostova, M.B., Denmeade, S.R., Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma (2013) J Immunol, 190, pp. 2567-2574. , https://doi.org/10.4049/jimmunol.1200856
  83. Huang, H., Haar Petersen, M., Ibañez-Vea, M., Lassen, P.S., Larsen, M.R., Palmisano, G., Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography (2016) Mol Cell Proteomics, 15, pp. 3282-3296. , https://doi.org/10.1074/mcp.M115.054551
  84. Bern, M., Kil, Y.J., Becker, C., Byonic: advanced peptide and protein identification software (2012) Curr Protoc Bioinformatics, , https://doi.org/10.1002/0471250953.bi1320s40, Chapter 13 Unit13.20
  85. Bern, M., Cai, Y., Goldberg, D., Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry (2007) Anal Chem, 79, pp. 1393-1400. , https://doi.org/10.1021/ac0617013
  86. Lee, L.Y., Moh, E.S., Parker, B.L., Bern, M., Packer, N.H., Thaysen-Andersen, M., Toward Automated N-Glycopeptide Identification in Glycoproteomics (2016) J Proteome Res, 15, pp. 3904-3915. , https://doi.org/10.1021/acs.jproteome.6b00438
  87. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., Mann, M., Andromeda: a peptide search engine integrated into the MaxQuant environment (2011) J Proteome Res, 10, pp. 1794-1805. , https://doi.org/10.1021/pr101065j
  88. Schwämmle, V., León, I.R., Jensen, O.N., Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates (2013) J Proteome Res, 12, pp. 3874-3883. , https://doi.org/10.1021/pr400045u
  89. Xia, J., Sinelnikov, I.V., Han, B., Wishart, D.S., MetaboAnalyst 3.0-making metabolomics more meaningful (2015) Nucleic Acids Res, 43, pp. W251-W257. , https://doi.org/10.1093/nar/gkv380
  90. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks (2003) Genome Res, 13, pp. 2498-2504. , https://doi.org/10.1101/gr.1239303