Osteochondral Allograft Transplantation for Osteochondral Lesions of the Talus: Midterm Follow-up

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS INC
Autores
GAUL, Florian
MCCAULEY, Julie C.
PULIDO, Pamela A.
BUGBEE, William D.
Citação
FOOT & ANKLE INTERNATIONAL, v.40, n.2, p.202-209, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Fresh osteochondral allograft (OCA) transplantation represents a biologic restoration technique as an alternative treatment option for larger osteochondral lesions of the talus (OLT). The purpose of this study was to evaluate midterm outcomes after OCA transplantation for the treatment of OLT. Methods: Nineteen patients (20 ankles) received partial unipolar OCA transplant for symptomatic OLT between January 1998 and October 2014. The mean age was 34.7 years, and 53% were male. The average graft size was 3.8 cm(2). All patients had a minimum follow-up of 2 years. Outcomes included the American Academy of Orthopaedic Surgeons Foot and Ankle Module (AAOS-FAM), the Olerud-Molander Ankle Score (OMAS), and pain and satisfaction questionnaires. Failure of OCA was defined as conversion to arthrodesis or revision OCA transplantation. Results: Five of 20 ankles (25%) required further surgery, of which 3 (5%) were considered OCA failures (2 arthrodesis and 1 OCA revision). The mean time to failure was 3.5 (range, 0.9 to 6.7) years. Survivorship was 88.7% at 5 years and 81.3% at 10 years. The median follow-up of the 17 patients with grafts in situ was 9.7 years. The mean OMAS improved significantly from 40 points preoperatively to 71 points postoperatively (P < .05; range, 5 to 55). The mean postoperative AAOS-FAM core score was 81.5 +/- 15 (range, 40.5 to 96.6). Fifteen of 17 patients responded to follow-up questions regarding their ankle; 14 patients reported less pain and better function, and 13 patients were satisfied with the results of the procedure. Conclusion: Our study of midterm results after OCA transplantations showed that this procedure was a reasonable treatment option for lar
Palavras-chave
ankle, articular cartilage, osteochondral allograft transplantation, osteochondral lesions of the talus
Referências
  1. Adams SB, 2011, J BONE JOINT SURG AM, V93A, P648, DOI 10.2106/JBJS.J.00141
  2. Aurich M, 2011, AM J SPORT MED, V39, P311, DOI 10.1177/0363546510381575
  3. Bae DK, 2006, ARTHROSCOPY, V22, P367, DOI 10.1016/j.arthro.2006.01.015
  4. Berlet GC, 2011, CLIN ORTHOP RELAT R, V469, P2356, DOI 10.1007/s11999-011-1813-2
  5. Bisicchia Salvatore, 2014, Iowa Orthop J, V34, P30
  6. Chuckpalwong B, 2008, ARTHROSCOPY, V24, P106, DOI 10.1016/j.arthro.2007.07.022
  7. Donnenwerth MP, 2012, ARTHROSCOPY, V28, P1902, DOI 10.1016/j.arthro.2012.04.055
  8. El-Daly I, 2016, CLIN ORTHOP RELAT R, V474, P246, DOI 10.1007/s11999-015-4595-0
  9. El-Rashidy H, 2011, J BONE JOINT SURG AM, V93A, P1634, DOI 10.2106/JBJS.J.00900
  10. Fansa AM, 2011, AM J SPORT MED, V39, P2457, DOI 10.1177/0363546511419811
  11. Ferkel RD, 2008, AM J SPORT MED, V36, P1750, DOI 10.1177/0363546508316773
  12. Ferreira C, 2016, J ISAKOS, V1, P184
  13. Flynn S, 2016, FOOT ANKLE INT, V37, P363, DOI 10.1177/1071100715620423
  14. FURUKAWA T, 1980, J BONE JOINT SURG AM, V62, P79, DOI 10.2106/00004623-198062010-00012
  15. Georgiannos D, 2016, KNEE SURG SPORT TR A, V24, P3722, DOI 10.1007/s00167-014-3389-3
  16. Giannini S, 2014, KNEE SURG SPORT TR A, V22, P1311, DOI 10.1007/s00167-013-2640-7
  17. Gobbi A, 2006, ARTHROSCOPY, V22, P1085, DOI 10.1016/j.arthro.2006.05.016
  18. Gortz S, 2006, OPER TECH ORTHOP, V16, P244, DOI 10.1053/j.oto.2006.08.005
  19. Haene R, 2012, J BONE JOINT SURG AM, V94A, P1105, DOI 10.2106/JBJS.J.02010
  20. Hahn DB, 2010, FOOT ANKLE INT, V31, P277, DOI 10.3113/FAI.2010.0277
  21. Haleem AM, 2014, AM J SPORT MED, V42, P1888, DOI 10.1177/0363546514535068
  22. Hangody L, 2008, INJURY, V39, pS32, DOI 10.1016/j.injury.2008.01.041
  23. HJERTQUIST SO, 1971, CALC TISS RES, V8, P54, DOI 10.1007/BF02010122
  24. Hunt K, 2013, J BONE JOINT SURG AM, V95, p[e118, 1], DOI 10.2106/JBJS.L.01476
  25. Hunt KJ, 2012, AM J SPORT MED, V40, P895, DOI 10.1177/0363546511434404
  26. Johanson NA, 2004, J BONE JOINT SURG AM, V86A, P902, DOI 10.2106/00004623-200405000-00003
  27. Kennedy JG, 2011, CARTILAGE, V2, P327, DOI 10.1177/1947603511400726
  28. Kreulen Christopher, 2018, Foot Ankle Spec, V11, P133, DOI 10.1177/1938640017713614
  29. Kwak SK, 2014, AM J SPORT MED, V42, P2156, DOI 10.1177/0363546514540587
  30. Latt LD, 2011, AM J SPORT MED, V39, P2662, DOI 10.1177/0363546511422987
  31. Lee KB, 2010, KNEE SURG SPORT TR A, V18, P247, DOI 10.1007/s00167-009-0914-x
  32. Leontaritis N, 2009, J BONE JOINT SURG AM, V91A, P333, DOI 10.2106/JBJS.H.00584
  33. Loren GJ, 2002, ARTHROSCOPY, V18, P412, DOI 10.1053/jars.2002.32317
  34. Madeley NJ, 2012, FOOT ANKLE INT, V33, P57, DOI 10.3113/FAI.2012.0057
  35. Murawski CD, 2013, J BONE JOINT SURG AM, V95A, P1045, DOI 10.2106/JBJS.L.00773
  36. Niemeyer P, 2012, KNEE SURG SPORT TR A, V20, P1696, DOI 10.1007/s00167-011-1729-0
  37. OLERUD C, 1984, ARCH ORTHOP TRAUM SU, V103, P190, DOI 10.1007/BF00435553
  38. Riskowski JL, 2011, ARTHRIT CARE RES, V63, pS229, DOI 10.1002/acr.20554
  39. Ross AW, 2016, ARTHROSCOPY, V32, P1377, DOI 10.1016/j.arthro.2016.01.036
  40. Saxena A, 2007, AM J SPORT MED, V35, P1680, DOI 10.1177/0363546507303561
  41. SHAPIRO F, 1993, J BONE JOINT SURG AM, V75A, P532, DOI 10.2106/00004623-199304000-00009
  42. Takao M, 2003, ARTHROSCOPY, V19, P1061, DOI 10.1016/j.arthro.2003.10.019
  43. Valderrabano V, 2009, AM J SPORT MED, V37, p105S, DOI 10.1177/0363546509351481
  44. VanTienderen RJ, 2017, ARTHROSCOPY, V33, P217, DOI 10.1016/j.arthro.2016.06.011
  45. Yoon HS, 2014, AM J SPORT MED, V42, P1896, DOI 10.1177/0363546514535186
  46. Zengerink M, 2010, KNEE SURG SPORT TR A, V18, P238, DOI 10.1007/s00167-009-0942-6