Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/31674
Title: Lipid core nanoparticles as vehicle for docetaxel reduces atherosclerotic lesion, inflammation, cell death and proliferation in an atherosclerosis rabbit model
Authors: MENEGHINI, Bianca C.TAVARES, Elaine R.GUIDO, Maria C.TAVONI, Thauany M.STEFANI, Helio A.KALIL-FILHO, RobertoMARANHAO, Raul C.
Citation: VASCULAR PHARMACOLOGY, v.115, p.46-54, 2019
Abstract: Chemotherapeutic agents used in cancer treatment associated to nanoparticles (LDE) that mimic the composition of low-density lipoprotein and buffer their toxicity can have strong anti-atherosclerosis action, as we showed in cholesterol-fed rabbits. Here, a novel preparation of docetaxel (DTX) carried in LDE was evaluated. Eighteen rabbits were fed 1% cholesterol during 8 weeks. After the first 4 weeks, 9 animals were treated for 4 weeks with intravenous LDE-DTX (1 mg/kg/week) and 9 with LDE only (controls) once a week for 4 weeks. Animals were then euthanized and the aortas were analyzed for morphometry, immunohistochemistry and Western blot. LDE-DTX treated group showed 80% reduction of atheroma area compared to controls. LDE-DTX treatment reduced in 60% the protein expression of macrophage marker CD68 and of MCP-1 in 80%. LDE-DTX pronouncedly lowered expression of pro-inflammatory markers NF-kappa B, TNF-alpha, IL-1 beta, IL-6 and von Willebrand factor and elicited 40% reduction in cell proliferation marker PCNA. The presence of smooth muscle cells in the intima was 85% smaller than in controls. Pro-apoptotic caspase 3, caspase 9, Bax, and anti-apoptotic Bcl-2 all were reduced by LDE-DTX. Protein expression of MMP-2 and MMP-9, TGF-beta and collagen 1 and 3 were also markedly lowered by the LDE-DTX treatment. Animals showed no hematological, hepatic or renal toxicity consequent to LDE-DTX treatment. In conclusion, LDE-DTX showed a wide array of strong effects on pro-inflammatory and proliferation-promoting factors that drive the lesion development. These findings and the lack of observable toxicity indicate that LDE-DTX can be a candidate for future clinical trials.
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MCP
Departamento de Cardio-Pneumologia - FM/MCP

Artigos e Materiais de Revistas Científicas - HC/InCor
Instituto do Coração - HC/InCor

Artigos e Materiais de Revistas Científicas - LIM/31
LIM/31 - Laboratório de Genética e Hematologia Molecular

Artigos e Materiais de Revistas Científicas - ODS/03
ODS/03 - Saúde e bem-estar


Files in This Item:
File Description SizeFormat 
art_MENEGHINI_Lipid_core_nanoparticles_as_vehicle_for_docetaxel_reduces_2019.PDF
  Restricted Access
publishedVersion (English)2.24 MBAdobe PDFView/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.