Multiplex-PCR for diagnosis of bacterial meningitis

Carregando...
Imagem de Miniatura
Citações na Scopus
20
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
ALBUQUERQUE, Renata Chaves
MORENO, Ana Carolina Ramos
RAGAZZI, Selma Lopes Betta
MARTINEZ, Marina Baquerizo
Citação
BRAZILIAN JOURNAL OF MICROBIOLOGY, v.50, n.2, p.435-443, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Considering the great lethality and sequels caused by meningitis, rapid diagnosis and prompt treatment initiation have a great impact on patient outcome. Here, we developed a multiplex-PCR for simultaneous detection of the four most prevalent bacterial pathogens directly in CSF samples. The multiplex-PCR was designed to detect the following genes: fbsA (Streptococcus agalactiae), lytA (Streptococcus pneumoniae), crtA (Neisseria meningitidis), p6 (Haemophilus influenzae), and 16S rRNA (any bacterial agent). The multiplex-PCR showed a DNA detection limit of 1pg/L. Among 447 CSF samples tested, 40 were multiplex-PCR positive, in which 27 and 13 had positive and negative bacterial culture, respectively. Our multiplex-PCR is fast, reliable, and easily implementable into a laboratory routine for bacterial meningitis confirmation, especially for patients who previously started antimicrobial therapy. Our molecular approach can substantially improve clinical diagnosis and epidemiological measures of meningitis disease burden.
Palavras-chave
Meningitis, Multiplex-PCR, Cerebrospinal fluid samples, Bacterial pathogens
Referências
  1. Abdeldaim GMK, 2010, BMC MICROBIOL, V10, DOI 10.1186/1471-2180-10-310
  2. Billal DS, 2007, INT J PEDIATR OTORHI, V71, P269, DOI 10.1016/j.ijporl.2006.10.009
  3. Brouwer MC, 2010, CLIN MICROBIOL REV, V23, P467, DOI 10.1128/CMR.00070-09
  4. Chakrabarti P, 2009, INDIAN J MED RES
  5. Corless CE, 2001, J CLIN MICROBIOL, V39, P1553, DOI 10.1128/JCM.39.4.1553-1558.2001
  6. de Filippis I, 2016, BRAZ J INFECT DIS, V20, P335, DOI 10.1016/j.bjid.2016.04.005
  7. de Zoysa A, 2012, J MED MICROBIOL, V61, P1086, DOI 10.1099/jmm.0.042879-0
  8. Heckenberg Sebastiaan G B, 2014, Handb Clin Neurol, V121, P1361, DOI 10.1016/B978-0-7020-4088-7.00093-6
  9. Khazani NA, 2017, J TROP MED, P1, DOI 10.1155/2017/7210849
  10. Khumalo J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173948
  11. Kim KS, 2010, LANCET INFECT DIS, V10, P32, DOI 10.1016/S1473-3099(09)70306-8
  12. Liesman RM, 2018, J CLIN MICROBIOL, V56, DOI [10.1128/JCM.01927-17, 10.1128/jcm.01927-17]
  13. Lindahl G, 2005, CLIN MICROBIOL REV, V18, P102, DOI 10.1128/CMR.18.1.102-127.2005
  14. McGill F, 2016, LANCET, V388, P3036, DOI 10.1016/S0140-6736(16)30654-7
  15. McHugh ML, 2012, BIOCHEM MEDICA, V22, P276
  16. MESSMER TO, 1995, CLIN BIOCHEM, V28, P567, DOI 10.1016/0009-9120(95)00044-0
  17. Mohammadi SF, 2013, ANN INDIAN ACAD NEUR, V16, P645, DOI 10.4103/0972-2327.120491
  18. NELSON MB, 1991, INFECT IMMUN, V59, P2658
  19. Philip AGS, 2009, FETAL NEONATAL BRAIN, DOI [10.1017/CBO9780511581281.033, DOI 10.1017/CBO9780511581281.033]
  20. Sacchi CT, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020675
  21. Saez-Llorens X, 2003, LANCET, V361, P2139, DOI 10.1016/S0140-6736(03)13693-8
  22. Seth R, 2017, J CLIN DIAGN RES, V11, pFC1, DOI 10.7860/JCDR/2017/28114.10532
  23. van de Beek D, 2006, NEW ENGL J MED, V100, P37
  24. van de Beek D, 2016, NAT REV DIS PRIMERS, V2, DOI 10.1038/nrdp.2016.74
  25. van de Beek D, 2012, LANCET, V380, P1693, DOI 10.1016/S0140-6736(12)61186-6
  26. van de Beek D, 2010, NEW ENGL J MED, V362, P146, DOI 10.1056/NEJMra0804573
  27. Wagner K, 2018, J CLIN MICROBIOL, V56, DOI 10.1128/JCM.01492-17
  28. Wang X, 2012, J CLIN MICROBIOL, V50, P702, DOI 10.1128/JCM.06087-11
  29. Whatmore AM, 1999, INFECT IMMUN