Effects of anthropogenic landscape changes on the abundance and acrodendrophily of Anopheles (Kerteszia) cruzii, the main vector of malaria parasites in the Atlantic Forest in Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
MEDEIROS-SOUSA, Antonio Ralph
DUARTE, Ana Maria Ribeiro de Castro
MUCCI, Luis Filipe
CERETTI-JUNIOR, Walter
MARRELLI, Mauro Toledo
Citação
MALARIA JOURNAL, v.18, article ID 110, 12p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundThe mosquito Anopheles (Kerteszia) cruzii is the main vector of human and simian malaria in the Atlantic Forest. This species is usually abundant in the forests where it occurs, preferring to live and feed on canopies, behaviour known as acrodendrophily. However, in several studies and locations this species has been observed in high density near the ground in the forest. In this study, it was hypothesized that factors associated with anthropogenic landscape changes may be responsible for the variation in abundance and acrodendrophily observed in An. cruzii.MethodsThe study was conducted in a conservation unit in the city of SAo Paulo, Brazil. Monthly entomological collections were performed from March 2015 to April 2017, and the resulting data were used with data from another study conducted in the same area between May 2009 and June 2010. Mosquitoes were collected from five sites using CDC and Shannon traps. Landscape composition and configuration metrics were measured, and generalized linear mixed-effect models were used to investigate the relationship between these metrics and variations in the abundance and acrodendrophily of An. cruzii.ResultsThe model that showed the best fit for the relationship between landscape metrics and An. cruzii abundance suggests that an increase in the proportion of forest cover leads to an increase in the abundance of this mosquito, while the model that best explained variations in An. cruzii acrodendrophily suggests that an increase in total forest-edge length leads to greater activity by this species at ground level.ConclusionWhile the data indicate that changes in landscape due to human activities lead to a reduction in An. cruzii abundance, such changes may increase the contact rate between this species and humans living on the edges of forest fragments where An. cruzii is found. Future studies should, therefore, seek to elucidate the effect of these landscape changes on the dynamics of Plasmodium transmission in the Atlantic Forest, which according to some studies includes the participation of simian hosts.
Palavras-chave
Anopheles (Kerteszia) cruzii, Atlantic Forest, Acrodendrophily, Landscape
Referências
  1. ARNELL J H, 1973, Contributions of the American Entomological Institute, V10, P1
  2. Bates D., 2016, R PACKAGE VERSION, V1, P1, DOI 10.2196/MEDINF0RM.4221
  3. Bolker B, 2018, BBMLE TOOLS GEN MAXI
  4. Bona ACD, 2008, REV BRAS ZOOL, V25, P40, DOI 10.1590/S0101-81752008000100007
  5. Brasil P, 2017, LANCET GLOB HEALTH, V5, pE1038, DOI 10.1016/S2214-109X(17)30333-9
  6. Brasil P, 2013, MALARIA J, V12, DOI 10.1186/1475-2875-12-402
  7. Buery JC, 2018, MEM I OSWALDO CRUZ, V113, P111, DOI 10.1590/0074-02760170225
  8. Burnham KP, 2002, MODEL SELECTION MULT
  9. Ceretti W, 2016, J ARTHROPOD-BORNE DI, V10, P102
  10. Cerutti C, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-33
  11. Chaves LF, 2015, B ENTOMOL RES, V105, P589, DOI 10.1017/S0007485315000474
  12. Chaves LF, 2010, FRONT ZOOL, V7, DOI 10.1186/1742-9994-7-3
  13. Chaves LF, 2016, INT J BIOMETEOROL, V60, P1727, DOI 10.1007/s00484-016-1162-7
  14. CHEN JQ, 1995, ECOL APPL, V5, P74, DOI 10.2307/1942053
  15. Consoli R, 1994, PRINCIPAIS MOSQUITOS
  16. Couto RD, 2010, REV SOC BRAS MED TRO, V43, P52, DOI 10.1590/S0037-86822010000100012
  17. Curado I, 1997, MEM I OSWALDO CRUZ, V92, P235, DOI 10.1590/S0074-02761997000200017
  18. Curado I, 2006, ACTA TROP, V100, P54, DOI 10.1016/j.actatropica.2006.09.010
  19. CVECentro de Vigilancia Epidemiologica, 2018, CAS AUT MAL EST SAO
  20. de Alencar FEC, 2018, MALARIA J, V17, DOI 10.1186/s12936-018-2263-z
  21. de Castro MC, 2006, P NATL ACAD SCI USA, V103, P2452, DOI 10.1073/pnas.0510576103
  22. de Pina-Costa A, 2014, MEM I OSWALDO CRUZ, V109, P618, DOI 10.1590/0074-0276140228
  23. DEANE L M, 1969, Revista do Instituto de Medicina Tropical de Sao Paulo, V11, P299
  24. Deane L.M., 1984, Memorias do Instituto Oswaldo Cruz, V79, P461
  25. DEANE L M, 1971, Revista do Instituto de Medicina Tropical de Sao Paulo, V13, P311
  26. DEANE LM, 1966, B WORLD HEALTH ORGAN, V35, P805
  27. DEANE LM, 1992, MEM I OSWALDO CRUZ, V87, P1
  28. Deane LM, 1968, VER BRAS BIOL, V28, P531
  29. Dias GD, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-2615-0
  30. Didham RK, 1999, BIOTROPICA, V31, P17, DOI 10.1111/j.1744-7429.1999.tb00113.x
  31. Dorville LFM, 1996, STUD NEOTROP FAUNA E, V31, P68, DOI 10.1076/snfe.31.2.68.13331
  32. dos Santos LG, 2008, REV BRAS ENTOMOL, V52, P105, DOI 10.1590/S0085-56262008000100018
  33. Duarte AMRC, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-58
  34. Dupuy J-F, 2018, STAT METHODS OVERDIS
  35. Ewers RM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058093
  36. Chaves LF, 2010, J MED ENTOMOL, V47, P291, DOI 10.1603/ME09250
  37. Ferreira E, 1969, Rev Bras Malariol Doencas Trop, V21, P819
  38. Forattini O P, 1968, Rev Saude Publica, V2, P111
  39. FORATTINI OP, 1986, REV SAUDE PUBL, V20, P1, DOI 10.1590/S0034-89101986000100001
  40. Forattini OP, 2002, CULICIDOLOGIA MED
  41. GARNHAM PCC, 1946, B ENTOMOL RES, V36, P473, DOI 10.1017/S000748530002410X
  42. GUIMARAES A E, 1986, Memorias do Instituto Oswaldo Cruz, V81, P93
  43. GUIMARAES A E, 1987, Memorias do Instituto Oswaldo Cruz, V82, P277
  44. Guimaraes A.E., 1985, MEM I O CRUZ, V80, P171
  45. Guimaraes AE, 2001, REV SAUDE PUBL, V35, P392, DOI 10.1590/S0034-89102001000400010
  46. Hartig F., 2018, DHARMA RESIDUAL DIAG
  47. Instituto de Astronomia Geofisica e Ciencias Atmosfericas da Universidade de SAo Paulo, 2019, NASC OC SOL 2011 202
  48. Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013
  49. Lane J., 1953, NEOTROPICAL CULICIDA
  50. Laporta GZ, 2014, BMC ECOL, V14, DOI 10.1186/s12898-014-0030-8
  51. Laporta GZ, 2011, MEM I OSWALDO CRUZ, V106, P239, DOI 10.1590/S0074-02762011000900029
  52. Marrelli MT, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-127
  53. Maselli LMF, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-224
  54. MCGARIGAL Kevin, 2012, FRAGSTATS V4 SPATIAL
  55. Medeiros-Sousa AR, 2013, J AM MOSQUITO CONTR, V29, P275, DOI 10.2987/12-6304R.1
  56. Chaves LSM, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-25344-5
  57. Chaves LSM, 2016, ACTA TROP, V164, P303, DOI 10.1016/j.actatropica.2016.09.023
  58. Multini LC, 2019, ACTA TROP, V190, P30, DOI 10.1016/j.actatropica.2018.10.009
  59. Neves A, 2013, ACTA TROP, V125, P102, DOI 10.1016/j.actatropica.2012.08.014
  60. Guedes MLP, 2014, REV BRAS ENTOMOL, V58, P88, DOI 10.1590/S0085-56262014000100014
  61. R Development Core Team, 2018, R LANG ENV STAT COMP
  62. Reitz R, 1983, FLORA ILUSTRADA CATA, P1
  63. Rezende HR, 2009, NEOTROP ENTOMOL, V38, P272, DOI 10.1590/S1519-566X2009000200017
  64. Ribeiro AF, 2012, J VECTOR ECOL, V37, P316, DOI 10.1111/j.1948-7134.2012.00233.x
  65. Rona LDP, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-60
  66. SAo Paulo (municipality), 2011, SECR VERD MEIO AMB P
  67. Sawyer DR, 1988, FRONTIER MALARIA AMA
  68. Magnago LFS, 2015, BIODIVERS CONSERV, V24, P2305, DOI 10.1007/s10531-015-0961-1
  69. Tubaki Rosa Maria, 1993, Revista Brasileira de Entomologia, V37, P569
  70. Ueno HM, 2007, REV SAUDE PUBL, V41, P269, DOI 10.1590/S0034-89102007000200014
  71. VELOSO HENRIQUE P., 1956, MEM INST OSWALDO CRUZ, V54, P1
  72. Wickham H., 2016, GGPLOT2 ELEGANT GRAP