Pain inhibition through transplantation of fetal neuronal progenitors into the injured spinal cord in rats

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WOLTERS KLUWER MEDKNOW PUBLICATIONS
Citação
NEURAL REGENERATION RESEARCH, v.14, n.11, p.2011-2019, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Neuropathic pain after spinal cord injury (SCI) is a complex condition that responds poorly to usual treatments. Cell transplantation represents a promising therapy; nevertheless, the ideal cell type in terms of neurogenic potential and effectiveness against pain remains largely controversial. Here, we evaluated the ability of fetal neural stem cells (fNSC) to relieve chronic pain and, secondarily, their effects on motor recovery. Adult Wistar rats with traumatic SCI were treated, 10 days after injury, with intra-spinal injections of culture medium (sham) or fNSCs extracted from telencephalic vesicles (TV group) or the ventral medulla (VM group) of E/14 embryos. Sensory (von Frey filaments and hot plate) and motor (the Basso, Beattie, Bresnahan locomotor rating scale and inclined plane test) assessments were performed during 8 weeks. Thereafter, spinal cords were processed for immunofluorescence and transplanted cells were quantified by stereology. The results showed improvement of thermal hyperalgesia in the TV and VM groups at 4 and 5 weeks after transplantation, respectively. Moreover, mechanical allodynia improved in both the TV and VM groups at 8 weeks. No significant motor recovery was observed in the TV or VM groups compared with sham. Stereological analyses showed that similar to 70% of TV and VM cells differentiated into NeuN(+) neurons, with a high proportion of enkephalinergic and GABAergic cells in the TV group and enkephalinergic and serotoninergic cells in the VM group. Our study suggests that neuronal precursors from TV and VM, once implanted into the injured spinal cord, maturate into different neuronal subtypes, mainly GABAergic, serotoninergic, and enkephalinergic, and all subtypes alleviate pain, despite no significant motor recovery. The study was approved by the Animal Ethics Committee of the Medical School of the University of Sao Paulo (protocol number 033/14) on March 4, 2016.
Palavras-chave
spinal cord injuries, chronic pain, neural stem cells, cell transplantation, neuronal differentiation, GABAergic neuron, serotoninergic neuron, enkephalinergic neuron
Referências
  1. Abbaszadeh HA, 2018, ANAT CELL BIOL, V51, P180, DOI 10.5115/acb.2018.51.3.180
  2. Abematsu Masahiko, 2006, Curr Stem Cell Res Ther, V1, P267, DOI 10.2174/157488806776956887
  3. Andresen SR, 2016, SPINAL CORD, V54, P973, DOI 10.1038/sc.2016.46
  4. Assinck P, 2017, NAT NEUROSCI, V20, P637, DOI 10.1038/nn.4541
  5. Baastrup C, 2008, CNS DRUGS, V22, P455, DOI 10.2165/00023210-200822060-00002
  6. Bao CS, 2018, EUR REV MED PHARMACO, V22, P6436, DOI 10.26355/eurrev_201810_16056
  7. BASBAUM AI, 1978, ANN NEUROL, V4, P451, DOI 10.1002/ana.410040511
  8. Basso DM, 1996, J NEUROTRAUM, V13, P343, DOI 10.1089/neu.1996.13.343
  9. Batista CM, 2019, SOMATOSENS MOT RES, V36, P14, DOI 10.1080/08990220.2018.1563537
  10. Berrocal YA, 2014, PAIN RES TREAT, DOI 10.1155/2014/178278
  11. Boadas-Vaello P, 2016, SPINAL CORD, V54, P330, DOI 10.1038/sc.2015.225
  12. Boroujerdi A, 2011, PAIN, V152, P649, DOI 10.1016/j.pain.2010.12.014
  13. Burke D, 2018, EUR J PAIN, V22, P1662, DOI 10.1002/ejp.1248
  14. CHAPLAN SR, 1994, J NEUROSCI METH, V53, P55, DOI 10.1016/0165-0270(94)90144-9
  15. Dale CS, 2006, PEPTIDES, V27, P2794, DOI 10.1016/j.peptides.2006.07.002
  16. Davies Jeannette E, 2008, J Biol, V7, P24, DOI 10.1186/jbiol85
  17. Falnikar A, 2016, GLIA, V64, P396, DOI 10.1002/glia.22936
  18. Fandel TM, 2016, CELL STEM CELL, V19, P544, DOI 10.1016/j.stem.2016.08.020
  19. Fuentealba LC, 2015, CELL, V161, P1644, DOI 10.1016/j.cell.2015.05.041
  20. Furlanetti LL, 2015, NEUROREHAB NEURAL RE, V29, P1001, DOI 10.1177/1545968315581419
  21. Gage FH, 2000, SCIENCE, V287, P1433, DOI 10.1126/science.287.5457.1433
  22. Gilron I, 2015, MAYO CLIN PROC, V90, P532, DOI 10.1016/j.mayocp.2015.01.018
  23. GRUNER JA, 1992, J NEUROTRAUM, V9, P123, DOI 10.1089/neu.1992.9.123
  24. Gwak YS, 2017, NEURAL PLAST, DOI 10.1155/2017/2480689
  25. Hatch MN, 2018, J NEUROL SCI, V384, P75, DOI 10.1016/j.jns.2017.11.018
  26. Hofstetter CP, 2005, NAT NEUROSCI, V8, P346, DOI 10.1038/nn1405
  27. Hwang I, 2016, CELL TRANSPLANT, V25, P593, DOI 10.3727/096368915X689460
  28. Kandel E. R., 2012, PRINCIPLES NEURAL SC
  29. Kim Hee Jung, 2017, Dev Reprod, V21, P1, DOI 10.12717/DR.2017.21.1.001
  30. Kramer JLK, 2017, J NEUROSCI RES, V95, P1295, DOI 10.1002/jnr.23881
  31. Kumar R, 2018, WORLD NEUROSURG, V113, pE345, DOI 10.1016/j.wneu.2018.02.033
  32. Lepski G, 2011, MOL CELL NEUROSCI, V47, P36, DOI 10.1016/j.mcn.2011.02.011
  33. Lepski G, 2013, FRONT CELL NEUROSCI, V7, DOI 10.3389/fncel.2013.00155
  34. Lepski G, 2011, TRANSPLANTATION, V91, P390, DOI 10.1097/TP.0b013e3182063083
  35. Lepski G, 2010, TISSUE ENG PT A, V16, P2769, DOI [10.1089/ten.tea.2009.0686, 10.1089/ten.TEA.2009.0686]
  36. Luo Y, 2013, NEUROSCI LETT, V549, P103, DOI 10.1016/j.neulet.2013.06.005
  37. Maciaczyk J, 2008, EXP NEUROL, V213, P354, DOI 10.1016/j.expneurol.2008.06.014
  38. Maciaczyk J, 2009, STEM CELLS DEV, V18, P1043, DOI 10.1089/scd.2008.0346
  39. Macias MY, 2006, EXP NEUROL, V201, P335, DOI 10.1016/j.expneurol.2006.04.035
  40. Martino G, 2006, NAT REV NEUROSCI, V7, P395, DOI 10.1038/nrn1908
  41. Mehta Swati, 2015, Top Spinal Cord Inj Rehabil, V21, P166, DOI 10.1310/sci2102-166
  42. Meisner JG, 2010, J NEUROTRAUM, V27, P729, DOI 10.1089/neu.2009.1166
  43. Merskey H, 2012, CLASSIFICATION CHRON, P209
  44. Miazga K, 2018, NEURAL PLAST, DOI 10.1155/2018/4232706
  45. MORGAN MM, 1992, NEUROSCIENCE, V47, P863, DOI 10.1016/0306-4522(92)90036-2
  46. Muller R, 2017, J REHABIL MED, V49, P489, DOI 10.2340/16501977-2241
  47. Nagoshi N, 2016, SPINAL CORD, V54, P656, DOI 10.1038/sc.2015.210
  48. Nori S, 2018, STEM CELL REP, V11, P1433, DOI 10.1016/j.stemcr.2018.10.017
  49. Previnaire J-G., 2009, Annals of Physical and Rehabilitation Medicine, V52, P188, DOI 10.1016/j.rehab.2008.12.002
  50. Putatunda R, 2014, BRAIN RES, V1581, P64, DOI 10.1016/j.brainres.2014.05.003
  51. RIVLIN AS, 1977, J NEUROSURG, V47, P577, DOI 10.3171/jns.1977.47.4.0577
  52. Roh DH, 2013, CELL TRANSPLANT, V22, P1577, DOI 10.3727/096368912X659907
  53. Ruiz-Juretschke F, 2011, NEUROLOGIA, V26, P26, DOI 10.1016/j.nrl.2010.10.003
  54. Setoguchi T, 2004, EXP NEUROL, V189, P33, DOI 10.1016/j.expneurol.2003.12.007
  55. Tashiro S, 2016, SCI REP-UK, V6, DOI 10.1038/srep30898
  56. Teixeira MJ, 2013, ARQ NEURO-PSIQUIAT, V71, P600, DOI 10.1590/0004-282X20130103
  57. TERMAN GW, 1984, SCIENCE, V226, P1270, DOI 10.1126/science.6505691
  58. Vanecek V, 2012, INT J NANOMED, V7, P3719, DOI 10.2147/IJN.S32824
  59. Vardeh D, 2016, J PAIN, V17, pT50, DOI 10.1016/j.jpain.2016.03.001
  60. Watanabe S, 2015, STEM CELLS, V33, P1902, DOI 10.1002/stem.2006
  61. Yaksh TL, 2017, CURR NEUROPHARMACOL, V15, P232, DOI 10.2174/1570159X14666160307145542
  62. Yao ZG, 2015, INT J CLIN EXP MED, V8, P404
  63. Yousefifard M, 2017, J MED PHYSL, V2, P34
  64. Yousefifard M, 2016, STEM CELL RES THER, V7, DOI 10.1186/s13287-016-0295-2
  65. Zhao P, 2016, J NEUROPHYSIOL, V115, P2893, DOI 10.1152/jn.01057.2015