Deep Brain Stimulation in Patients With Mutations in Parkinson's Disease-Related Genes: A Systematic Review

Carregando...
Imagem de Miniatura
Citações na Scopus
37
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
AQUINO, Camila Catherine
MUNHOZ, Renato Puppi
FASANO, Alfonso
Citação
MOVEMENT DISORDERS CLINICAL PRACTICE, v.6, n.5, p.359-368, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD), and careful selection of candidates is a key component of successful therapy. Although it is recognized that factors such as age, disease duration, and levodopa responsiveness can influence outcomes, it is unclear whether genetic background should also serve as a parameter. Objectives The aim of this systematic review is to explore studies that have evaluated DBS in patients with mutations in PD-related genes. Methods We performed a selective literature search for articles regarding the effects of DBS in autosomal dominant or recessive forms of PD or in PD patients with genetic risk factors. Data regarding changes in motor and nonmotor scores and the presence of adverse events after the stimulation were collected. Results A total of 25 studies were included in the systematic review, comprising 135 patients. In the shorter term, most patients showed marked or satisfactory response to subthalamic DBS, although leucine rich repeat kinase 2 carriers of R114G mutations had higher rates of unsatisfactory outcome. Longer term follow-up data were scarce but suggested that motor benefit is sustained. Patients with the glucosidase beta acid (GBA) mutation showed higher rates of cognitive decline after surgery. Motor outcome was scarce for pallidal DBS. Few adverse events were reported. Conclusions Subthalamic DBS results in positive outcomes in the short term in patients with Parkin, GBA, and leucine-rich repeat kinase 2 (non-R144G) mutations, although the small sample size limits the interpretation of our findings. Longer and larger cohorts of follow-up, with broader nonmotor symptom evaluations will be necessary to better customize DBS therapy in this population.
Palavras-chave
deep brain stimulation, genetics, Parkinson's disease
Referências
  1. Alcalay RN, 2012, NEUROLOGY, V78, P1434, DOI 10.1212/WNL.0b013e318253d54b
  2. Angeli A, 2013, MOVEMENT DISORD, V28, P1370, DOI 10.1002/mds.25535
  3. Antonini A, 2012, J NEUROL, V259, P165, DOI 10.1007/s00415-011-6162-2
  4. Artusi CA, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2018.7800
  5. Boot E, 2018, NEUROLOGY, V90, pE2059, DOI 10.1212/WNL.0000000000005660
  6. Breit S, 2010, J NEUROL, V257, P1205, DOI 10.1007/s00415-010-5493-8
  7. Butcher NJ, 2013, JAMA NEUROL, V70, P1359, DOI 10.1001/jamaneurol.2013.3646
  8. Capecci M, 2004, MOVEMENT DISORD, V19, P1450, DOI 10.1002/mds.20250
  9. Chen YF, 2017, BMC NEUROL, V17, DOI 10.1186/s12883-017-0972-5
  10. Cury RG, 2014, NEUROLOGY, V83, P1403, DOI 10.1212/WNL.0000000000000887
  11. Dafsari HS, 2016, BRAIN STIMUL, V9, P78, DOI 10.1016/j.brs.2015.08.005
  12. Dufournet B, 2017, REV NEUROL-FRANCE, V173, P406, DOI 10.1016/j.neurol.2017.03.021
  13. Fleury V, 2013, PARKINSONISM RELAT D, V19, P707, DOI 10.1016/j.parkreldis.2013.04.002
  14. Genc G, 2016, PARKINSONISM RELAT D, V24, P137, DOI 10.1016/j.parkreldis.2016.01.018
  15. Giladi N, 2016, FRONT NEUROL, V7, DOI 10.3389/fneur.2016.00071
  16. Gomez-Esteban JC, 2008, NEUROSURGERY, V62, P857, DOI [10.1227/01.neu.0000318171.82719.35, 10.1227/01.NEU.0000313147.96184.F5]
  17. Greenbaum L, 2013, PARKINSONISM RELAT D, V19, P1053, DOI 10.1016/j.parkreldis.2013.07.005
  18. Johansen KK, 2011, ACTA NEUROL SCAND, V123, P201, DOI 10.1111/j.1600-0404.2010.01387.x
  19. Katz M, 2015, ANN NEUROL, V77, P710, DOI 10.1002/ana.24374
  20. Kim HJ, 2014, J CLIN NEUROSCI, V21, P107, DOI 10.1016/j.jocn.2013.03.026
  21. Krack P, 2003, NEW ENGL J MED, V349, P1925, DOI 10.1056/NEJMoa035275
  22. Kuusimaki Tomi, 2019, J Neurol, DOI 10.1007/s00415-019-09181-8
  23. Lefaucheur R, 2010, PARKINSONISM RELAT D, V16, P482, DOI 10.1016/j.parkreldis.2010.04.013
  24. Lesage S, 2007, ARCH NEUROL-CHICAGO, V64, P425, DOI 10.1001/archneur.64.3.425
  25. Lohmann E, 2008, MOVEMENT DISORD, V23, P740, DOI 10.1002/mds.21903
  26. Lythe V, 2017, J PARKINSON DIS, V7, P635, DOI 10.3233/JPD-171172
  27. Mok KY, 2016, LANCET NEUROL, V15, P585, DOI 10.1016/S1474-4422(16)00071-5
  28. Morgante F, 2016, NEUROLOGY, V87, P1436
  29. Moro E, 2008, NEUROLOGY, V70, P1186, DOI 10.1212/01.wnl.0000307748.11216.03
  30. Nakahara K, 2014, J NEUROL SCI, V345, P276, DOI 10.1016/j.jns.2014.07.053
  31. Perju-Dumbrava LD, 2012, J PARKINSON DIS, V2, P269, DOI 10.3233/JPD-012121
  32. Rizzone Mario Giorgio, 2018, Parkinsonism Relat Disord, DOI 10.1016/j.parkreldis.2018.08.006
  33. Romito LMA, 2005, J NEUROL, V252, P208, DOI 10.1007/s00415-005-0638-x
  34. Sayad M, 2016, BMC NEUROSCI, V17, DOI 10.1186/s12868-016-0240-4
  35. Schupbach M, 2007, MOVEMENT DISORD, V22, P119, DOI 10.1002/mds.21178
  36. Sharp ME, 2015, MOVEMENT DISORD, V30, P278, DOI 10.1002/mds.26065
  37. Shimo Y, 2014, NEUROMODULATION, V17, P102, DOI 10.1111/ner.12034
  38. Sidransky E, 2009, NEW ENGL J MED, V361, P1651, DOI 10.1056/NEJMoa0901281
  39. Spatola Marianna, 2014, Parkinsonism Relat Disord, V20 Suppl 1, pS35, DOI 10.1016/S1353-8020(13)70011-7
  40. Stefani A, 2013, NEUROL SCI, V34, P383, DOI 10.1007/s10072-012-1014-0
  41. Tomlinson CL, 2010, MOVEMENT DISORD, V25, P2649, DOI 10.1002/mds.23429
  42. Trinh J, 2018, MOVEMENT DISORD, V33, P1857, DOI 10.1002/mds.27527
  43. Weiss D, 2012, J NEUROL, V259, P1970, DOI 10.1007/s00415-012-6469-7
  44. Welter ML, 2002, BRAIN, V125, P575, DOI 10.1093/brain/awf050