Structural alterations and markers of endothelial activation in pulmonary and bronchial arteries in fatal asthma

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
ROSSI, Renata Calciolari
ANONNI, Raquel
FERREIRA, Diogenes Seraphim
Citação
ALLERGY ASTHMA AND CLINICAL IMMUNOLOGY, v.15, n.1, article ID 50, 9p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background There is interest in better understanding vessel pathology in asthma, given the findings of loss of peripheral vasculature associated with disease severity by imaging and altered markers of endothelial activation. To date, vascular changes in asthma have been described mainly at the submucosal capillary level of the bronchial microcirculation, with sparse information available on the pathology of bronchial and pulmonary arteries. The aim of this study was to describe structural and endothelial activation markers in bronchial arteries (BAs) and pulmonary arteries (PAs) of asthma patients who died during a fatal asthma attack. Methods Autopsy lung tissue was obtained from 21 smoking and non-smoking patients who died of an asthma attack and nine non-smoking control patients. Verhoeff-Masson trichrome staining was used to analyse the structure of arteries. Using immuno-histochemistry and image analyses, we quantified extracellular matrix (ECM) components (collagen I, collagen III, versican, tenascin, fibronectin, elastic fibres), adhesion molecules [vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1)] and markers of vascular tone/dysfunction [endothelin-1 (ET-1) and angiotensin II type 2 receptor (AT2)] in PAs and BAs. Results There were no significant differences in ECM components, ICAM-1, ET-1 or AT2 between asthma patients and controls. Smoking asthma patients presented with decreased content of collagen III in both BA (p = 0.046) and PA (p = 0.010) walls compared to non-smoking asthma patients. Asthma patients had increased VCAM-1 content in the BA wall (p = 0.026) but not in the PA wall. Conclusion Our data suggest that the mechanisms linking asthma and arterial functional abnormalities might involve systemic rather than local mediators. Loss of collagen III in the PA was observed in smoking asthma patients, and this was compatible with the degradative environment induced by cigarette smoking. Our data also reinforce the idea that the mechanisms of leukocyte efflux via adhesion molecules differ between bronchial and pulmonary circulation, which might be relevant to understanding and treating the distal lung in asthma.
Palavras-chave
Asthma, Pulmonary artery, Bronchial artery, Pathology, Extracellular matrix, Adhesion molecules, Endothelial activation, Remodelling
Referências
  1. Annoni R, 2015, EUR RESPIR J, V45, P1485, DOI 10.1183/09031936.00213814
  2. Ash SY, 2018, AM J RESP CRIT CARE, V198, P39, DOI 10.1164/rccm.201712-2426OC
  3. Boulet LP, 2018, CURR OPIN PULM MED, V24, P56, DOI 10.1097/MCP.0000000000000441
  4. Cagnoni EF, 2015, J ALLERGY CLIN IMMUN, V135, P1352, DOI 10.1016/j.jaci.2014.08.021
  5. Chassagne C, 2000, AM J RESP CELL MOL, V22, P323, DOI 10.1165/ajrcmb.22.3.3701
  6. Chung WS, 2014, EUR RESPIR J, V43, P801, DOI 10.1183/09031936.00043313
  7. Crystal RG, 1997, LUNG SCI FDN
  8. de Gasparo M, 1999, REGUL PEPTIDES, V81, P11, DOI 10.1016/S0167-0115(99)00023-3
  9. Doerschuk C M, 2000, Respir Res, V1, P136, DOI 10.1186/rr24
  10. Dolhnikoff M, 1999, AM J RESP CRIT CARE, V160, P1750, DOI 10.1164/ajrccm.160.5.9812040
  11. Foudi N, 2017, J ASTHMA, V54, P1012, DOI 10.1080/02770903.2017.1292282
  12. Ge XN, 2016, P NATL ACAD SCI USA, V113, pE4837, DOI 10.1073/pnas.1601958113
  13. Green FHY, 2006, CHEST, V130, P1025, DOI 10.1378/chest.130.4.1025
  14. Gregory LG, 2013, ALLERGY, V68, P1579, DOI 10.1111/all.12271
  15. Harkness LM, 2015, PHARMACOL THERAPEUT, V148, P17, DOI 10.1016/j.pharmthera.2014.11.010
  16. Henno P, 2011, AM J PHYSIOL-LUNG C, V300, pL831, DOI 10.1152/ajplung.00251.2010
  17. HOGG JC, 1995, ANNU REV PHYSIOL, V57, P97, DOI 10.1146/annurev.ph.57.030195.000525
  18. Mauad T, 2008, REV PANAM SALUD PUBL, V23, P418, DOI 10.1590/S1020-49892008000600007
  19. Menk M, 2018, J INFLAMM RES, V11, P169, DOI 10.2147/JIR.S160573
  20. Peinado VI, 2008, CHEST, V134, P808, DOI 10.1378/chest.08-0820
  21. Pires-Neto RC, 2013, J CRIT CARE, V28, DOI 10.1016/j.jcrc.2012.05.013
  22. RABINOVITCH M, 1978, CIRCULATION, V58, P1107, DOI 10.1161/01.CIR.58.6.1107
  23. Ramsay SG, 1997, EUR RESPIR J, V10, P2766, DOI 10.1183/09031936.97.10122766
  24. Rydell-Tormanen K, 2008, AM J RESP CELL MOL, V39, P61, DOI 10.1165/rcmb.2007-0441OC
  25. SAETTA M, 1991, AM REV RESPIR DIS, V143, P138, DOI 10.1164/ajrccm/143.1.138
  26. Sakai H, 2010, PFLUG ARCH EUR J PHY, V460, P645, DOI 10.1007/s00424-010-0844-y
  27. Sand JMB, 2016, RESP RES, V17, DOI 10.1186/s12931-016-0440-6
  28. Shiang C, 2009, CLIN EXP ALLERGY, V39, P1499, DOI 10.1111/j.1365-2222.2009.03281.x
  29. Sneeboer MMS, 2016, J ALLERGY CLIN IMMUN, V137, P1727, DOI 10.1016/j.jaci.2015.10.038
  30. Tamimi A, 2012, RESP MED, V106, P319, DOI 10.1016/j.rmed.2011.11.003
  31. Tormanen KR, 2005, AM J RESP CRIT CARE, V171, P19, DOI 10.1164/rccm.200406-498OC
  32. Ueki S, 2009, ALLERGY, V64, P718, DOI 10.1111/j.1398-9995.2008.01871.x
  33. Wagenaar GTM, 2013, AM J PHYSIOL-LUNG C, V305, pL341, DOI 10.1152/ajplung.00360.2012