Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: A COSMIC collaboration cohort study

Carregando...
Imagem de Miniatura
Citações na Scopus
82
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
LIPNICKI, Darren M.
MAKKAR, Steve R.
CRAWFORD, John D.
THALAMUTHU, Anbupalam
KOCHAN, Nicole A.
LIMA-COSTA, Maria Fernanda
CASTRO-COSTA, Erico
FERRI, Cleusa Pinheiro
BRAYNE, Carol
STEPHAN, Blossom
Citação
PLOS MEDICINE, v.16, n.7, article ID e1002853, 27p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background With no effective treatments for cognitive decline or dementia, improving the evidence base for modifiable risk factors is a research priority. This study investigated associations between risk factors and late-life cognitive decline on a global scale, including comparisons between ethno-regional groups. Methods and findings We harmonized longitudinal data from 20 population-based cohorts from 15 countries over 5 continents, including 48,522 individuals (58.4% women) aged 54-105 (mean = 72.7) years and without dementia at baseline. Studies had 2-15 years of follow-up. The risk factors investigated were age, sex, education, alcohol consumption, anxiety, apolipoprotein E epsilon 4 allele (APOE*4) status, atrial fibrillation, blood pressure and pulse pressure, body mass index, cardiovascular disease, depression, diabetes, self-rated health, high cholesterol, hypertension, peripheral vascular disease, physical activity, smoking, and history of stroke. Associations with risk factors were determined for a global cognitive composite outcome (memory, language, processing speed, and executive functioning tests) and Mini-Mental State Examination score. Individual participant data meta-analyses of multivariable linear mixed model results pooled across cohorts revealed that for at least 1 cognitive outcome, age (B = -0.1, SE = 0.01), APOE*4 carriage (B = -0.31, SE = 0.11), depression (B = -0.11, SE = 0.06), diabetes (B = -0.23, SE = 0.10), current smoking (B = -0.20, SE = 0.08), and history of stroke (B = -0.22, SE = 0.09) were independently associated with poorer cognitive performance (p < 0.05 for all), and higher levels of education (B = 0.12, SE = 0.02) and vigorous physical activity (B = 0.17, SE = 0.06) were associated with better performance (p < 0.01 for both). Age (B = -0.07, SE = 0.01), APOE*4 carriage (B = -0.41, SE = 0.18), and diabetes (B = -0.18, SE = 0.10) were independently associated with faster cognitive decline (p < 0.05 for all). Different effects between Asian people and white people included stronger associations for Asian people between ever smoking and poorer cognition (group by risk factor interaction: B = -0.24, SE = 0.12), and between diabetes and cognitive decline (B = -0.66, SE = 0.27; p < 0.05 for both). Limitations of our study include a loss or distortion of risk factor data with harmonization, and not investigating factors at midlife. Conclusions These results suggest that education, smoking, physical activity, diabetes, and stroke are all modifiable factors associated with cognitive decline. If these factors are determined to be causal, controlling them could minimize worldwide levels of cognitive decline. However, any global prevention strategy may need to consider ethno-regional differences.
Palavras-chave
Referências
  1. Ancelin ML, 2005, CURR PHARM DESIGN, V11, P4229, DOI 10.2174/138161205774913228
  2. Anstey KJ, 2017, J ALZHEIMERS DIS, V56, P215, DOI 10.3233/JAD-160826
  3. Anstey KJ, 2012, INT J EPIDEMIOL, V41, P951, DOI 10.1093/ije/dyr025
  4. Bangen KJ, 2013, J STROKE CEREBROVASC, V22, P1361, DOI 10.1016/j.jstrokecerebrovasdis.2013.03.013
  5. Baumgart M, 2015, ALZHEIMERS DEMENT, V11, P718, DOI 10.1016/j.jalz.2015.05.016
  6. Bennett S, 2014, MATURITAS, V79, P184, DOI 10.1016/j.maturitas.2014.05.009
  7. Bhatt DL, 2006, JAMA-J AM MED ASSOC, V295, P180, DOI 10.1001/jama.295.2.180
  8. Brayne C, 2006, INT J EPIDEMIOL, V35, P1140, DOI 10.1093/ije/dyl199
  9. Cagney KA, 2002, J GERONTOL B-PSYCHOL, V57, pP163, DOI 10.1093/geronb/57.2.P163
  10. CORDER EH, 1993, SCIENCE, V261, P921, DOI 10.1126/science.8346443
  11. Crean S, 2011, DEMENT GERIATR COGN, V31, P20, DOI 10.1159/000321984
  12. Dardiotis E, 2014, NEUROEPIDEMIOLOGY, V43, P9, DOI 10.1159/000362723
  13. Llibre-Rodriguez JD, 2017, MEDICC REV, V19, P31
  14. Deelen J, 2011, AGING CELL, V10, P686, DOI 10.1111/j.1474-9726.2011.00705.x
  15. Farrer LA, 1997, JAMA-J AM MED ASSOC, V278, P1349, DOI 10.1001/jama.278.16.1349
  16. Feng L, 2010, J NUTR HEALTH AGING, V14, P433
  17. Ferri CP, 2017, PLOS MED, V14, DOI 10.1371/journal.pmed.1002271
  18. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  19. Ganguli M, 2000, NEUROLOGY, V54, P1109, DOI 10.1212/WNL.54.5.1109
  20. Griffith L, 2013, AHRQ PUBLICATION, V13-EHC040-EF
  21. Guaita A, 2013, BMC GERIATR, V13, DOI 10.1186/1471-2318-13-98
  22. Haan MN, 2003, J AM GERIATR SOC, V51, P169, DOI 10.1046/j.1532-5415.2003.51054.x
  23. Han JW, 2018, PSYCHIAT INVEST, V15, P767, DOI 10.30773/pi.2018.06.02
  24. Herlitz A, 2008, CURR DIR PSYCHOL SCI, V17, P52, DOI 10.1111/j.1467-8721.2008.00547.x
  25. Higgins J, 2011, COCHRANE COLLAB, V5, P1, DOI 10.1002/9780470712184
  26. Hui DS, 2015, AM HEART J, V169, P448, DOI 10.1016/j.ahj.2014.12.015
  27. Institute of Medicine, 2015, COGNITIVE AGING, DOI [10.17226/2169325879131, DOI 10.17226/21693]
  28. Jolles J, 1995, MAASTRICHT AGING STU
  29. Kandula NR, 2007, ANN EPIDEMIOL, V17, P191, DOI 10.1016/j.annepidem.2006.10.005
  30. Kane RL, 2017, 17EHC008EF AG HEALTH
  31. Katz MJ, 2012, ALZ DIS ASSOC DIS, V26, P335, DOI 10.1097/WAD.0b013e31823dbcfc
  32. Lei XY, 2012, J HUM RESOUR, V47, P951, DOI 10.3368/jhr.47.4.951
  33. Lima-Costa MF, 2011, INT J EPIDEMIOL, V40, P862, DOI 10.1093/ije/dyq143
  34. Lipnicki DM, 2017, PLOS MED, V14, DOI 10.1371/journal.pmed.1002261
  35. Livingston G, 2017, LANCET, V390, P2673, DOI 10.1016/S0140-6736(17)31363-6
  36. Lobo A, 2005, EUR J PSYCHIAT, V19, P40
  37. Luck T, 2010, DEMENT GERIATR COGN, V29, P164, DOI 10.1159/000272424
  38. Ma CR, 2017, MOL NEURODEGENER, V12, DOI 10.1186/s13024-017-0167-y
  39. Ma RCW, 2013, ANN NY ACAD SCI, V1281, P64, DOI 10.1111/nyas.12098
  40. Marioni RE, 2016, EUR J HUM GENET, V24, P919, DOI 10.1038/ejhg.2015.210
  41. Meguro K, 2007, J NEUROL SCI, V260, P175, DOI 10.1016/j.jns.2007.04.051
  42. Mielke MM, 2005, NEUROLOGY, V64, P1689, DOI 10.1212/01.WNL.0000161870.78572.A5
  43. Moheet A, 2015, ANN NY ACAD SCI, V1353, P60, DOI 10.1111/nyas.12807
  44. Momtaz YA, 2015, AM J ALZHEIMERS DIS, V30, P405, DOI 10.1177/1533317514552318
  45. Mons U, 2013, EUR J EPIDEMIOL, V28, P823, DOI 10.1007/s10654-013-9840-9
  46. Mukadam N, 2019, LANCET GLOB HEALTH, V7, pE596, DOI 10.1016/S2214-109X(19)30074-9
  47. Mungas D, 2018, NEUROBIOL AGING, V68, P142, DOI 10.1016/j.neurobiolaging.2018.04.002
  48. Narazaki K, 2013, NEUROEPIDEMIOLOGY, V40, P23, DOI 10.1159/000339753
  49. National Academies of Sciences Engineering and Medicine, 2017, PREV COGN DECL DEM W, DOI [10.17226/2478228650595, DOI 10.17226/24782, 10.17226/24782]
  50. Ninomiya T, 2014, CURR DIABETES REP, V14, DOI 10.1007/s11892-014-0487-z
  51. Peters R, 2015, J HYPERTENS, V33, P2156, DOI 10.1097/HJH.0000000000000653
  52. Phillips C, 2017, NEURAL PLAST, DOI 10.1155/2017/3589271
  53. Piccinin AM, 2013, J GERONTOL B-PSYCHOL, V68, P374, DOI 10.1093/geronb/gbs077
  54. Prince M., 2015, WORLD ALZHEIMER REPO
  55. Riedel-Heller SG, 2001, BRIT J PSYCHIAT, V179, P250, DOI 10.1192/bjp.179.3.250
  56. Riley RD, 2010, BMJ-BRIT MED J, V340, DOI 10.1136/bmj.c221
  57. Ritchie K, 2010, BRIT MED J, V341, DOI 10.1136/bmj.c3885
  58. Sachdev PS, 2013, BMC NEUROL, V13, DOI 10.1186/1471-2377-13-165
  59. Sachdev PS, 2010, INT PSYCHOGERIATR, V22, P1248, DOI 10.1017/S1041610210001067
  60. Sargent-Cox K, 2011, DEMENT GERIATR COGN, V31, P45, DOI 10.1159/000322373
  61. Scazufca M, 2008, INT J EPIDEMIOL, V37, P879, DOI 10.1093/ije/dyn125
  62. Schievink Syenna H J, 2017, Eur Heart J, DOI 10.1093/eurheartj/ehx365
  63. Sharp ES, 2011, ALZ DIS ASSOC DIS, V25, P289, DOI 10.1097/WAD.0b013e318211c83c
  64. Singer J.D., 2003, APPL LONGITUDINAL DA
  65. Singh-Manoux A, 2017, EUR HEART J, V38, P2612, DOI 10.1093/eurheartj/ehx208
  66. Spencer RJ, 2013, EXP AGING RES, V39, P382, DOI 10.1080/0361073X.2013.808109
  67. Stefanidis KB, 2018, NEUROPSYCHOL REV, V28, P1, DOI 10.1007/s11065-017-9359-z
  68. Sturman MT, 2008, NEUROLOGY, V70, P360, DOI 10.1212/01.wnl.0000285081.04409.bb
  69. Sundermann EE, 2016, NEUROLOGY, V87, P1916, DOI 10.1212/WNL.0000000000003288
  70. Tang EYH, 2018, J AM HEART ASSOC, V7, DOI 10.1161/JAHA.117.006443
  71. van den Kommer TN, 2009, NEUROBIOL AGING, V30, P534, DOI 10.1016/j.neurobiolaging.2007.08.005
  72. Wilson RS, 2009, NEUROLOGY, V72, P460, DOI 10.1212/01.wnl.0000341782.71418.6c
  73. Wong CHY, 2013, INT PSYCHOGERIATR, V25, P1125, DOI 10.1017/S1041610213000161
  74. Zeng DC, 2019, MEDICINE, V98, DOI 10.1097/MD.0000000000014499
  75. Zhang J, 2017, COMPR PSYCHIAT, V75, P22, DOI 10.1016/j.comppsych.2017.02.008