Extracellular Vesicles Shedding Promotes Melanoma Growth in Response to Chemotherapy

Carregando...
Imagem de Miniatura
Citações na Scopus
28
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Citação
SCIENTIFIC REPORTS, v.9, article ID 14482, 12p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Extracellular vesicles (EVs) are emerging as key players in intercellular communication. EVs can transfer biological macromolecules to recipient cells, modulating various physiological and pathological processes. It has been shown that tumor cells secrete large amounts of EVs that can be taken up by malignant and stromal cells, dictating tumor progression. In this study, we investigated whether EVs secreted by melanoma cells in response to chemotherapy modulate tumor response to alkylating drugs. Our findings showed that human and murine melanoma cells secrete more EVs after treatment with temozolomide and cisplatin. We observed that EVs shed by melanoma cells after temozolomide treatment modify macrophage phenotype by skewing macrophage activation towards the M2 phenotype through upregulation of M2-marker genes. Moreover, these EVs were able to favor melanoma re-growth in vivo, which was accompanied by an increase in Arginase 1 and IL10 gene expression levels by stromal cells and an increase in genes related to DNA repair, cell survival and stemness in tumor cells. Taken together, this study suggests that EVs shed by tumor cells in response to chemotherapy promote tumor repopulation and treatment failure through cellular reprogramming in melanoma cells.
Palavras-chave
Referências
  1. Abels ER, 2016, CELL MOL NEUROBIOL, V36, P301, DOI 10.1007/s10571-016-0366-z
  2. Al-Nedawi K, 2008, NAT CELL BIOL, V10, P619, DOI 10.1038/ncb1725
  3. Ayob AZ, 2018, J BIOMED SCI, V25, DOI 10.1186/s12929-018-0426-4
  4. Baj-Krzyworzeka M, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-0789-9
  5. Bardi GT, 2018, CYTOKINE, V105, P63, DOI 10.1016/j.cyto.2018.02.002
  6. Becker A, 2016, CANCER CELL, V30, P836, DOI 10.1016/j.ccell.2016.10.009
  7. Begicevic RR, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18112362
  8. Chang JM, 2019, FASEB J, V33, P114, DOI 10.1096/fj.201800019RR
  9. Chow A, 2014, SCI REP-UK, V4, DOI 10.1038/srep05750
  10. Corcoran C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050999
  11. Costa-Silva B, 2015, NAT CELL BIOL, V17, P816, DOI 10.1038/ncb3169
  12. de Vrij J, 2015, INT J CANCER, V137, P1630, DOI 10.1002/ijc.29521
  13. Desrochers LM, 2016, DEV CELL, V37, P301, DOI 10.1016/j.devcel.2016.04.019
  14. El-Khattouti A, 2014, CANCER LETT, V343, P123, DOI 10.1016/j.canlet.2013.09.024
  15. Eton O, 2002, J CLIN ONCOL, V20, P2045, DOI 10.1200/JCO.2002.07.044
  16. Feng QY, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14450
  17. Hong BS, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-556
  18. Huang Z, 2017, ONCOL RES, V25, P651, DOI 10.3727/096504016X14752792816791
  19. Ji ZY, 2015, J INVEST DERMATOL, V135, P1863, DOI 10.1038/jid.2015.105
  20. Jung T, 2009, NEOPLASIA, V11, P1093, DOI 10.1593/neo.09822
  21. Ke XQ, 2017, NEOPLASIA, V19, P941, DOI 10.1016/j.neo.2017.06.007
  22. Keklikoglou I, 2019, NAT CELL BIOL, V21, P190, DOI 10.1038/s41556-018-0256-3
  23. Khayat D, 2002, J CLIN ONCOL, V20, P2411, DOI 10.1200/JCO.2002.20.10.2411
  24. King HW, 2012, BMC CANCER, V12, DOI 10.1186/1471-2407-12-421
  25. Kreger BT, 2016, CANCERS, V8, DOI 10.3390/cancers8120111
  26. Li YQ, 2012, CANCER RES, V72, P576, DOI 10.1158/0008-5472.CAN-11-3070
  27. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  28. Logozzi M, 2017, CANCER LETT, V403, P318, DOI 10.1016/j.canlet.2017.06.036
  29. Lundholm M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108925
  30. Lv LH, 2012, J BIOL CHEM, V287, P15874, DOI 10.1074/jbc.M112.340588
  31. Lv MM, 2014, TUMOR BIOL, V35, P10773, DOI 10.1007/s13277-014-2377-z
  32. Matsumoto A, 2017, CANCER SCI, V108, P1803, DOI 10.1111/cas.13310
  33. Mattia G, 2018, CELL DEATH DIS, V9, DOI 10.1038/s41419-017-0059-7
  34. Nazarenko I, 2010, CANCER RES, V70, P1668, DOI 10.1158/0008-5472.CAN-09-2470
  35. Noy R, 2014, IMMUNITY, V41, P49, DOI 10.1016/j.immuni.2014.06.010
  36. Parolini I, 2009, J BIOL CHEM, V284, P34211, DOI 10.1074/jbc.M109.041152
  37. Peinado H, 2012, NAT MED, V18, P883, DOI 10.1038/nm.2753
  38. Phadke MS, 2015, MOL CANCER THER, V14, P1354, DOI 10.1158/1535-7163.MCT-14-0832
  39. Piao Yin Ji, 2018, Oncotarget, V9, P7398, DOI 10.18632/oncotarget.23238
  40. Qu L, 2016, CANCER CELL, V29, P653, DOI 10.1016/j.ccell.2016.03.004
  41. Samuel P., 2018, PHILOS T R SOC LON B, V373, P1737
  42. Shimoda M, 2017, BBA-MOL CELL RES, V1864, P1989, DOI 10.1016/j.bbamcr.2017.05.027
  43. Shinohara H, 2017, J IMMUNOL, V199, P1505, DOI 10.4049/jimmunol.1700167
  44. Tian H, 2015, CANCER LETT, V358, P8, DOI 10.1016/j.canlet.2014.12.038
  45. van Schaijik B, 2018, J CLIN PATHOL, V71, P88, DOI 10.1136/jclinpath-2017-204815
  46. Vella LJ, 2017, NEOPLASIA, V19, P932, DOI 10.1016/j.neo.2017.07.002
  47. Wendler F, 2017, ONCOGENE, V36, P877, DOI 10.1038/onc.2016.253
  48. Wouters J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076550
  49. Wu LJ, 2016, TUMOR BIOL, V37, P12169, DOI 10.1007/s13277-016-5071-5
  50. Wysoczynski M, 2009, INT J CANCER, V125, P1595, DOI 10.1002/ijc.24479
  51. Xiao X, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089534
  52. Yanez-Mo M, 2015, J EXTRACELL VESICLES, V4, DOI 10.3402/jev.v4.27066
  53. Ye SB, 2016, J PATHOL, V240, P329, DOI 10.1002/path.4781
  54. Ye SB, 2014, ONCOTARGET, V5, P5439, DOI 10.18632/oncotarget.2118
  55. Zeng AL, 2017, ONCOGENE, V36, P5369, DOI 10.1038/onc.2017.134
  56. Zhang HY, 2016, CANCER LETT, V375, P331, DOI 10.1016/j.canlet.2016.03.026
  57. Zhang HC, 2012, STEM CELLS DEV, V21, P3289, DOI 10.1089/scd.2012.0095