What Is the Skull Structure Influence of Squamosal Suture Synostosis in Nonsyndromic and Syndromic Crouzon Craniosynostosis?

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
LU, Xiaona
CHEN, Guocheng
FORTE, Antonio Jorge
CABREJO, Raysa
SINGH, Anusha
KYLE, Gabrick
STEINBACHER, Derek M.
ALPEROVICH, Michael
PERSING, John A.
Citação
JOURNAL OF CRANIOFACIAL SURGERY, v.30, n.6, p.1671-1675, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The morphologic effect of squamosal synostosis has not been clarified, due to its low occurrence rate, and its inclination to be combined with premature closure of other major sutures, especially in syndromic synostosis. This study's goal is to explore the morphological influence of squamosal synostosis in both syndromic and nonsyndromic craniosynostosis patients. Methods: Twenty-five computed tomography (CT) scans from nonsyndromic squamosal synostosis (NSS), Crouzon syndrome with squamosal synostosis (CSS), Crouzon syndrome without squamosal synostosis, and normal controls were included. Three-dimensional (3D) cephalometry, entire cranial volume and cranial fossa volume were measured using Materialise software. Results: The entire cranial volume of all groups was similar. The NSS developed a gradual reduction in the severity of reduced segmental volume from the anterior cranial fossa, to the middle cranial fossa, and to the unaffected volume of posterior cranial fossa. The CSS developed the most severe volume reduction of middle cranial fossa (12608.30 +/- 2408.61 mm(3) vs 26077.96 +/- 4465.74 mm(3), 52%), with proportionate volume reduction of the anterior (7312.21 +/- 2435.97 mm(3) vs 10520.63 +/- 2400.43 mm(3), 30%) and posterior cranial fossa (33487.29 +/- 5598.93 mm(3) vs 48325.04 +/- 14700.44 mm(3), 31%). The NSS developed a narrower anterior cranial fossa, a clockwise rotated Frankfort horizontal plane, and a retracted chin (pogonion). Conclusion: Squamosal synostosis may alter the development of cranial fossa volume, especially the volume of middle cranial fossa. However, the development of cranial base, and related facial features are determined largely by major vault sutures and associated syndromic conditions, rather than the squamosal suture alone.
Palavras-chave
Crouzon syndrome, nonsyndromic, squamosal synostosis
Referências
  1. Abu-Sittah GS, 2016, J NEUROSURG-PEDIATR, V17, P469, DOI 10.3171/2015.6.PEDS15177
  2. Babler W J, 1982, Prog Clin Biol Res, V101, P333
  3. BABLER WJ, 1982, J NEUROSURG, V57, P535, DOI 10.3171/jns.1982.57.4.0535
  4. Beckett JS, 2012, PLAST RECONSTR SURG, V130, p442E, DOI 10.1097/PRS.0b013e31825dc244
  5. Bendon CL, 2014, J CRANIO MAXILL SURG, V42, P245, DOI 10.1016/j.jcms.2013.05.009
  6. Bolk L, 1915, AM J ANAT, V17, P495, DOI 10.1002/aja.1000170404
  7. Boutros S, 2007, J CRANIOFAC SURG, V18, P146, DOI 10.1097/01.scs.0000248655.53405.a7
  8. Breakey RWF, 2018, PLAST RECONSTR SURG
  9. Calandrelli R, 2014, NEURORADIOLOGY, V56, P865, DOI 10.1007/s00234-014-1392-5
  10. Coll G, 2015, NEUROSURGERY, V76, P571, DOI 10.1227/NEU.0000000000000676
  11. Eley KA, 2016, J CRANIOFAC SURG, V27, P1543, DOI 10.1097/SCS.0000000000002888
  12. Fearon JA, 2017, PLAST RECONSTR SURG, V140, p446E, DOI 10.1097/PRS.0000000000003603
  13. Fernandes YB, 2016, ARQ NEURO-PSIQUIAT, V74, P405, DOI 10.1590/0004-282X20160041
  14. FOK H, 1992, BRIT J PLAST SURG, V45, P394, DOI 10.1016/0007-1226(92)90013-N
  15. Forrest CR, 2013, PLAST RECONSTR SURG, V131, p86E, DOI 10.1097/PRS.0b013e318272c12b
  16. Forte AJ, 2015, PLAST RECONSTR SURG, V136, P1054, DOI 10.1097/PRS.0000000000001693
  17. Forte AJ, 2014, PLAST RECONSTR SURG, V134, P285, DOI 10.1097/PRS.0000000000000360
  18. Goldstein JA, 2014, PLAST RECONSTR SURG, V134, P504, DOI 10.1097/PRS.0000000000000419
  19. Iqbal Showkathali, 2017, Asian J Neurosurg, V12, P428, DOI 10.4103/1793-5482.175627
  20. Kanodia G, 2012, J NEUROSCI RURAL PRA, V3, P261, DOI 10.4103/0976-3147.102602
  21. Lu X, 2019, INT J ORAL MAX SURG, V48, P309, DOI 10.1016/j.ijom.2018.10.013
  22. Lu X, PLAST RECONSTR SURG
  23. Mazzaferro DM, 2018, PLAST RECONSTR SURG, V141, p559E, DOI 10.1097/PRS.0000000000004238
  24. Murphy BD, 2017, J CRANIOFAC SURG, V28, P1179, DOI 10.1097/SCS.0000000000003603
  25. Naran S, 2017, J CRANIOFAC SURG, V28, P2030, DOI 10.1097/SCS.0000000000003888
  26. Nie XG, 2005, ACTA ODONTOL SCAND, V63, P127, DOI 10.1080/00016350510019847
  27. Perrine SMM, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00369
  28. Ranger A, 2010, J CRANIOFAC SURG, V21, P1547, DOI 10.1097/SCS.0b013e3181ebe62f
  29. Rogers GF, 2015, CLEFT PALATE-CRAN J, V52, P751, DOI 10.1597/14-092
  30. Rosenberg P, 1997, PLAST RECONSTR SURG, V99, P1396, DOI 10.1097/00006534-199704001-00030
  31. Runyan CM, 2017, PLAST RECONSTR SURG, V140, p434E, DOI 10.1097/PRS.0000000000003586
  32. Sgouros S, 1999, J NEUROSURG, V91, P617, DOI 10.3171/jns.1999.91.4.0617
  33. Smartt JM, 2012, PLAST RECONSTR SURG, V130, P165, DOI 10.1097/PRS.0b013e318254b271
  34. Taylor WJ, 2001, J NEUROSURG, V94, P377, DOI 10.3171/jns.2001.94.3.0377
  35. Thompson DNP, 1997, PEDIATR NEUROSURG, V26, P288, DOI 10.1159/000121208
  36. Tokumaru AM, 1996, AM J NEURORADIOL, V17, P619
  37. Trigylidas T, 2008, CHILD NERV SYST, V24, P329, DOI 10.1007/s00381-007-0432-4
  38. Yang JF, 2017, PLAST RECONSTR SURG, V139, P442, DOI 10.1097/PRS.0000000000002952