The Vastus Medialis Insertion Is More Proximal and Medial in Patients With Patellar Instability: A Magnetic Resonance Imaging Case-Control Study

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS INC
Citação
ORTHOPAEDIC JOURNAL OF SPORTS MEDICINE, v.7, n.12, article ID 2325967119880840, 6p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The anatomy and function of the quadriceps muscle play a role in patellofemoral stability. Few studies have evaluated anatomic differences in the vastus medialis between patients with and without patellar instability. Purpose: To compare the anatomy of the vastus medialis using magnetic resonance imaging in patients with patellar instability to a control group. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A group of patients with patellar instability were sex-matched with a control group with anterior cruciate ligament tears, meniscal injuries, or sprains; patients younger than 15 years were excluded. The anatomy of the vastus medialis was examined by the distance between the distal origin of the vastus medialis in the femur and the medial femoral condyle, the distance from the proximal pole of the patella to the most distal insertion of the muscle and its ratio to the length of the articular surface of the patella, and a qualitative description of the insertion position of the muscle fibers (directly in the patella or the medial retinaculum). Results: Both groups comprised 78 knees (48 female; 61.5%). The mean age in the control and patellar instability groups was 30.2 +/- 7.8 years and 25.6 +/- 7.5 years, respectively (P = .001). The distance from the vastus origin to the condyle was 27.52 +/- 3.49 mm and 26.59 +/- 3.43 mm, respectively (P = .041); the distance from the proximal pole of the patella to the most distal muscle insertion was 17.59 +/- 5.54 mm and 15.02 +/- 4.18 mm, respectively (P < .001); and the ratio of this distance to the joint surface was 0.586 +/- 0.180 and 0.481 +/- 0.130, respectively (P < .001). In 75.6% of knees in the patellar instability group, the insertion of the vastus was into the medial retinaculum and not into the patella compared with 52.6% in the control group (P = .003; odds ratio, 2.8). Conclusion: The distal insertion of the vastus medialis differed in knees with patellar instability, with a more proximal insertion and less patellar coverage relative to controls, and was more frequently found in the retinaculum instead of directly in the patella.
Palavras-chave
patellar instability, vastus medialis, anatomy, magnetic resonance imaging
Referências
  1. Balcarek P, 2014, BIOMED RES INT, DOI 10.1155/2014/326586
  2. Baumann CA, 2018, KNEE SURG SPORT TR A, V26, P2920, DOI 10.1007/s00167-018-4833-6
  3. Berruto Massimo, 2018, Joints, V6, P33, DOI 10.1055/s-0038-1636949
  4. Bitar AC, 2012, AM J SPORT MED, V40, P114, DOI 10.1177/0363546511423742
  5. CONLAN T, 1993, J BONE JOINT SURG AM, V75A, P682, DOI 10.2106/00004623-199305000-00007
  6. Desio SM, 1998, AM J SPORT MED, V26, P59, DOI 10.1177/03635465980260012701
  7. Fisher B, 2010, ARTHROSCOPY, V26, P1384, DOI 10.1016/j.arthro.2010.04.005
  8. Grob K, 2018, KNEE SURG SPORT TR A, V26, P727, DOI 10.1007/s00167-016-4396-3
  9. GUNAL I, 1992, J BONE JOINT SURG BR, V74, P624
  10. Hautamaa PV, 1998, CLIN ORTHOP RELAT R, P174
  11. Hinckel BB, 2017, ARTHROSCOPY, V33, P1862, DOI 10.1016/j.arthro.2017.04.020
  12. Hinckel BB, 2017, KNEE SURG SPORT TR A, V25, P3053, DOI 10.1007/s00167-016-4095-0
  13. Hinckel BB, 2015, ORTHOP J SPORTS MED, V3, DOI 10.1177/2325967115601031
  14. Hinckel BB, 2018, KNEE SURG SPORT TR A, V26, P685, DOI 10.1007/s00167-017-4469-y
  15. Hinckel Betina Bremer, 2016, Rev. bras. ortop., V51, P75, DOI 10.1016/j.rboe.2015.03.012
  16. Howells NR, 2012, J BONE JOINT SURG BR, V94B, P1202, DOI 10.1302/0301-620X.94B9.28738
  17. Hyong IH, 2013, J PHYS THER SCI, V25, P915, DOI 10.1589/jpts.25.915
  18. INSALL J, 1979, CLIN ORTHOP RELAT R, P63
  19. Jan MH, 2009, AM J SPORT MED, V37, P1743, DOI 10.1177/0363546509333483
  20. KOSKINEN SK, 1992, ARTHROSCOPY, V8, P465, DOI 10.1016/0749-8063(92)90009-Z
  21. LIEB FJ, 1968, J BONE JOINT SURG AM, VA 50, P1535, DOI 10.2106/00004623-196850080-00003
  22. Lin YF, 2008, AM J SPORT MED, V36, P741, DOI 10.1177/0363546507312171
  23. Mochizuki T, 2013, KNEE SURG SPORT TR A, V21, P305, DOI 10.1007/s00167-012-1993-7
  24. Mohr KJ, 2003, CLIN ORTHOP RELAT R, P261, DOI 10.1097/01.blo.0000093918.26658.6a
  25. Ostermeier S, 2007, CLIN BIOMECH, V22, P327, DOI 10.1016/j.clinbiomech.2006.10.002
  26. Pagnano MW, 2006, CLIN ORTHOP RELAT R, P102, DOI 10.1097/01.blo.0000238788.44349.0f
  27. Pal S, 2012, J ORTHOP RES, V30, P927, DOI 10.1002/jor.22008
  28. Pal S, 2011, AM J SPORT MED, V39, P590, DOI 10.1177/0363546510384233
  29. Panagiotopoulos E, 2006, KNEE SURG SPORT TR A, V14, P7, DOI 10.1007/s00167-005-0631-z
  30. Peeler J, 2005, CLIN ANAT, V18, P281, DOI 10.1002/ca.20110
  31. Sakai N, 2000, CLIN BIOMECH, V15, P335, DOI 10.1016/S0268-0033(99)00089-3
  32. Sarkar Aparna, 2009, Indian J Physiol Pharmacol, V53, P275
  33. Schuttler KF, 2014, KNEE SURG SPORT TR A, V22, P2623, DOI 10.1007/s00167-013-2485-0
  34. Sillanpaa P, 2008, CLIN ORTHOP RELAT R, V466, P1475, DOI 10.1007/s11999-008-0207-6
  35. Zeichen J, 1999, KNEE SURG SPORT TR A, V7, P173, DOI 10.1007/s001670050143
  36. Zhao JZ, 2012, AM J SPORT MED, V40, P1355, DOI 10.1177/0363546512439193