An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds

Carregando...
Imagem de Miniatura
Citações na Scopus
52
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
FECCHIO, Alan
BELL, Jeffrey A.
BOSHOLN, Mariane
VAUGHAN, Jefferson A.
TKACH, Vasyl V.
LUTZ, Holly L.
CUETO, Victor R.
GOROSITO, Cristian A.
GONZALEZ-ACUNA, Daniel
STROMLUND, Chad
Citação
JOURNAL OF ANIMAL ECOLOGY, v.89, n.2, p.423-435, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Geographic variation in environmental conditions as well as host traits that promote parasite transmission may impact infection rates and community assembly of vector-transmitted parasites. Identifying the ecological, environmental and historical determinants of parasite distributions and diversity is therefore necessary to understand disease outbreaks under changing environments. Here, we identified the predictors and contributions of infection probability and phylogenetic diversity of Leucocytozoon (an avian blood parasite) at site and species levels across the New World. To explore spatial patterns in infection probability and lineage diversity for Leucocytozoon parasites, we surveyed 69 bird communities from Alaska to Patagonia. Using phylogenetic Bayesian hierarchical models and high-resolution satellite remote-sensing data, we determined the relative influence of climate, landscape, geography and host phylogeny on regional parasite community assembly. Infection rates and parasite diversity exhibited considerable variation across regions in the Americas. In opposition to the latitudinal gradient hypothesis, both the diversity and prevalence of Leucocytozoon parasites decreased towards the equator. Host relatedness and traits known to promote vector exposure neither predicted infection probability nor parasite diversity. Instead, the probability of a bird being infected with Leucocytozoon increased with increasing vegetation cover (NDVI) and moisture levels (NDWI), whereas the diversity of parasite lineages decreased with increasing NDVI. Infection rates and parasite diversity also tended to be higher in cooler regions and higher latitudes. Whereas temperature partially constrains Leucocytozoon diversity and infection rates, landscape features, such as vegetation cover and water body availability, play a significant role in modulating the probability of a bird being infected. This suggests that, for Leucocytozoon, the barriers to host shifting and parasite host range expansion are jointly determined by environmental filtering and landscape, but not by host phylogeny. Our results show that integrating host traits, host ancestry, bioclimatic data and microhabitat characteristics that are important for vector reproduction are imperative to understand and predict infection prevalence and diversity of vector-transmitted parasites. Unlike other vector-transmitted diseases, our results show that Leucocytozoon diversity and prevalence will likely decrease with warming temperatures.
Palavras-chave
community assembly, latitudinal diversity gradient, macroecology, NDVI, parasite distribution, parasite diversity, phylogenetic diversity
Referências
  1. Barrow LN, 2019, ECOL LETT, V22, P987, DOI 10.1111/ele.13263
  2. Bell JA, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0993-0
  3. Bensch S, 2004, EVOLUTION, V58, P1617, DOI 10.1111/j.0014-3820.2004.tb01742.x
  4. Bensch S, 2009, MOL ECOL RESOUR, V9, P1353, DOI 10.1111/j.1755-0998.2009.02692.x
  5. Bordes F., 2010, BIOGEOGRAPHY HOST PA, P89
  6. Canard EF, 2014, AM NAT, V183, P468, DOI 10.1086/675363
  7. Chown SL, 2004, PLOS BIOL, V2, P1701, DOI 10.1371/journal.pbio.0020406
  8. Clark N., 2019, FIGSHARE DIGITAL REP, DOI [10.6084/m9.figshare.9916328.v2, DOI 10.6084/M9.FIGSHARE.9916328.V2]
  9. Clark NJ, 2018, GLOBAL ECOL BIOGEOGR, V27, P744, DOI 10.1111/geb.12741
  10. Clark NJ, 2018, DIVERS DISTRIB, V24, P13, DOI 10.1111/ddi.12661
  11. Clark NJ, 2017, MOL ECOL, V26, P3074, DOI 10.1111/mec.14101
  12. Currie DC, 2008, HYDROBIOLOGIA, V595, P469, DOI 10.1007/s10750-007-9114-1
  13. de Villemereuil P, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-102
  14. Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075
  15. Duchene DA, 2015, GLOBAL ECOL BIOGEOGR, V24, P1261, DOI 10.1111/geb.12370
  16. Ellisa VA, 2015, P NATL ACAD SCI USA, V112, P11294, DOI 10.1073/pnas.1515309112
  17. Fecchio A, 2018, J PARASITOL, V104, P168, DOI 10.1645/17-182
  18. Fecchio A, 2019, MOL ECOL, V28, P2681, DOI 10.1111/mec.15094
  19. Fecchio A, 2019, ECOL LETT, V22, P547, DOI 10.1111/ele.13215
  20. Galen Spencer C, 2019, J Anim Ecol, V88, P1936, DOI 10.1111/1365-2656.13089
  21. Galen SC, 2018, BMC EVOL BIOL, V18, DOI 10.1186/s12862-018-1242-x
  22. Galen SC, 2014, J AVIAN BIOL, V45, P374, DOI 10.1111/jav.00375
  23. Gelman A, 1996, STAT SINICA, V6, P733
  24. Gonzalez AD, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100695
  25. Guernier V, 2004, PLOS BIOL, V2, P740, DOI 10.1371/journal.pbio.0020141
  26. Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x
  27. Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI 10.1021/BK-1999-0734.CH008
  28. Haque U, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-120
  29. Harrigan RJ, 2014, EVOL APPL, V7, P799, DOI 10.1111/eva.12176
  30. Hellgren O, 2004, J PARASITOL, V90, P797, DOI 10.1645/GE-184R1
  31. Hillebrand H, 2004, AM NAT, V163, P192, DOI 10.1086/381004
  32. Hsieh TC, 2017, SYST BIOL, V66, P100, DOI 10.1093/sysbio/syw073
  33. Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631
  34. Joseph MB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165768
  35. Justice CO, 1998, IEEE T GEOSCI REMOTE, V36, P1228, DOI 10.1109/36.701075
  36. Kamiya T, 2014, BIOL REV, V89, P123, DOI 10.1111/brv.12046
  37. Lafferty KD, 2009, ECOLOGY, V90, P888, DOI 10.1890/08-0079.1
  38. LaPointe DA, 2010, J PARASITOL, V96, P318, DOI 10.1645/GE-2290.1
  39. Lotta IA, 2016, PROTIST, V167, P185, DOI 10.1016/j.protis.2016.02.002
  40. Lutz HL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121254
  41. Magalhaes RJS, 2011, ADV PARASIT, V74, P267, DOI 10.1016/B978-0-12-385897-9.00005-7
  42. McCreadie JW, 2005, ECOL ENTOMOL, V30, P201, DOI 10.1111/j.0307-6946.2005.00681.x
  43. Merino S, 2008, AUSTRAL ECOL, V33, P329, DOI 10.1111/j.1442-9993.2008.01820.x
  44. Mittelbach GG, 2007, ECOL LETT, V10, P315, DOI 10.1111/j.1461-0248.2007.01020.x
  45. Murdock CC, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0952-9
  46. Nunn CL, 2005, DIVERS DISTRIB, V11, P249, DOI 10.1111/j.1366-9516.2005.00160.x
  47. O'Hara RB, 2009, BAYESIAN ANAL, V4, P85, DOI 10.1214/09-BA403
  48. Oakgrove KS, 2014, INT J PARASITOL, V44, P717, DOI 10.1016/j.ijpara.2014.04.011
  49. Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766
  50. Parratt SR, 2016, ANNU REV ECOL EVOL S, V47, P283, DOI 10.1146/annurev-ecolsys-121415-032321
  51. PIANKA ER, 1966, AM NAT, V100, P33, DOI 10.1086/282398
  52. Plummer M, 2003, P 3 INT WORKSH DISTR, V124, P125, DOI 10.1038/S41598-018-29599-W
  53. POULIN R, 1995, ECOL MONOGR, V65, P283, DOI 10.2307/2937061
  54. Poulin R, 2007, EVOLUTIONARY ECOLOGY
  55. Poulin R, 2014, INT J PARASITOL, V44, P581, DOI 10.1016/j.ijpara.2014.02.003
  56. Poulin R, 2011, TRENDS PARASITOL, V27, P355, DOI 10.1016/j.pt.2011.05.003
  57. Pullan RL, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0000958
  58. Ricklefs RE, 2010, SCIENCE, V329, P226, DOI 10.1126/science.1188954
  59. Rohde K, 1998, INT J PARASITOL, V28, P461, DOI 10.1016/S0020-7519(97)00209-9
  60. ROHDE K, 1992, OIKOS, V65, P514, DOI 10.2307/3545569
  61. Santiago-Alarcon D, 2012, BIOL REV, V87, P928, DOI 10.1111/j.1469-185X.2012.00234.x
  62. Sehgal RNM, 2011, P ROY SOC B-BIOL SCI, V278, P1025, DOI 10.1098/rspb.2010.1720
  63. Sehgal RNM, 2015, INT J PARASITOL-PAR, V4, P421, DOI 10.1016/j.ijppaw.2015.09.001
  64. Stephens PR, 2016, ECOL LETT, V19, P1159, DOI 10.1111/ele.12644
  65. Tuck SL, 2014, ECOL EVOL, V4, P4658, DOI 10.1002/ece3.1273
  66. Valkinas G, 2005, AVIAN MALARIA PARASI
  67. Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a
  68. Wells K, 2014, BIODIVERS CONSERV, V23, P2289, DOI 10.1007/s10531-014-0723-5
  69. Wickham H., 2017, DPLYR GRAMMAR DATA M
  70. Wilman H, 2014, ECOLOGY, V95, P2027, DOI 10.1890/13-1917.1
  71. Woolhouse MEJ, 1997, P NATL ACAD SCI USA, V94, P338, DOI 10.1073/pnas.94.1.338
  72. Zhang S, 2016, J ECOL, V104, P1089, DOI 10.1111/1365-2745.12588