Macrophage: A Potential Target on Cartilage Regeneration

Carregando...
Imagem de Miniatura
Citações na Scopus
180
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
GOMOLL, Andreas H.
LATTERMANN, Christian
BUENO, Daniela Franco
AMANO, Mariane Tami
Citação
FRONTIERS IN IMMUNOLOGY, v.11, article ID 111, 9p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cartilage lesions and osteoarthritis (OA) presents an ever-increasing clinical and socioeconomic burden. Synovial inflammation and articular inflammatory environment are the key factor for chondrocytes apoptosis and hypertrophy, ectopic bone formation and OA progression. To effectively treat OA, it is critical to develop a drug that skews inflammation toward a pro-chondrogenic microenvironment. In this narrative and critical review, we aim to see the potential use of immune cells modulation or cell therapy as therapeutic alternatives to OA patients. Macrophages are immune cells that are present in synovial lining, with different roles depending on their subtypes. These cells can polarize to pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes, being the latter associated with wound-healing by the production of ARG-1 and pro-chondrogenic cytokines, such as IL-10, IL-1RA, and TGF-b. Emerging evidence reveals that macrophage shift can be determined by several stimuli, apart from the conventional in vitro IL-4, IL-13, and IL-10. Evidences show the potential of physical exercise to induce type 2 response, favoring M2 polarization. Moreover, macrophages in contact with oxLDL have effect on the production of anabolic mediators as TGF-b. In the same direction, type II collagen, that plays a critical role in development and maturation process of chondrocytes, can also induce M2 macrophages, increasing TGF-b. The mTOR pathway activation in macrophages was shown to be able to polarize macrophages in vitro, though further studies are required. The possibility to use mesenchymal stem cells (MSCs) in cartilage restoration have a more concrete literature, besides, MSCs also have the capability to induce M2 macrophages. In the other direction, M1 polarized macrophages inhibit the proliferation and viability of MSCs and impair their ability to immunosuppress the environment, preventing cartilage repair. Therefore, even though MSCs therapeutic researches advances, other sources of M2 polarization are attractive issues, and further studies will contribute to the possibility to manipulate this polarization and to use it as a therapeutic approach in OA patients.
Palavras-chave
M1, M2 macrophages, cartilage regeneration, synovial inflammation, mesenchymal stem cells, osteoarthritis, articular cartilage, cell therapy
Referências
  1. Amano MT, 2018, INT IMMUNOPHARMACOL, V64, P151, DOI 10.1016/j.intimp.2018.08.020
  2. Ariffin SHZ, 2012, SCI WORLD J, DOI 10.1100/2012/827149
  3. Barminko JA, 2014, BIOTECHNOL BIOENG, V111, P2239, DOI 10.1002/bit.25282
  4. Baroja-Mazo Alberto, 2016, World J Transplant, V6, P183, DOI 10.5500/wjt.v6.i1.183
  5. Benoit M, 2008, J IMMUNOL, V181, P3733, DOI 10.4049/jimmunol.181.6.3733
  6. Bondeson J, 2010, ARTHRITIS RHEUM-US, V62, P647, DOI 10.1002/art.27290
  7. Byles V, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3834
  8. Castrogiovanni P, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20030511
  9. Chahal J, 2019, STEM CELL TRANSL MED, V8, P746, DOI 10.1002/sctm.18-0183
  10. Conaghan PG, 2019, NAT REV RHEUMATOL, V15, P355, DOI 10.1038/s41584-019-0221-y
  11. Culemann S, 2019, NATURE, V572, P670, DOI 10.1038/s41586-019-1471-1
  12. Dai ML, 2018, BIOMATERIALS, V180, P91, DOI 10.1016/j.biomaterials.2018.07.011
  13. de Munter W, 2017, OSTEOARTHR CARTILAGE, V25, P118, DOI 10.1016/j.joca.2016.07.020
  14. de Munter W, 2016, RHEUMATOLOGY, V55, P16, DOI 10.1093/rheumatology/kev270
  15. Desando G, 2013, ARTHRITIS RES THER, V15, DOI 10.1186/ar4156
  16. Dominici M, 2006, CYTOTHERAPY, V8, P315, DOI 10.1080/14653240600855905
  17. Engelholm LH, 2003, J CELL BIOL, V160, P1009, DOI 10.1083/jcb.200211091
  18. Fahy N, 2014, OSTEOARTHR CARTILAGE, V22, P1167, DOI 10.1016/j.joca.2014.05.021
  19. Farr Jack, 2016, J Clin Orthop Trauma, V7, P183, DOI 10.1016/j.jcot.2016.05.001
  20. Fernandes TL, 2020, TISSUE ENG PART B-RE, V26, P1, DOI [10.1089/ten.teb.2019.0140, 10.1089/ten.TEB.2019.0140]
  21. Fernandes TL, 2018, TISSUE ENG PART C-ME, V24, P709, DOI [10.1089/ten.tec.2018.0219, 10.1089/ten.TEC.2018.0219]
  22. Fernandes TL, 2018, STEM CELL REV REP, V14, P734, DOI 10.1007/s12015-018-9820-2
  23. Festuccia WT, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095432
  24. Fibbe WE, 2007, ANN NY ACAD SCI, V1106, P272, DOI 10.1196/annals.1392.025
  25. Flanigan DC, 2010, MED SCI SPORT EXER, V42, P1795, DOI 10.1249/MSS.0b013e3181d9eea0
  26. Gomoll AH, 2010, KNEE SURG SPORT TR A, V18, P434, DOI 10.1007/s00167-010-1072-x
  27. Griffin TM, 2019, CLIN EXP RHEUMATOL, V37, P57
  28. Haltmayer E, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214709
  29. Hamilton Amanda M, 2019, PLoS One, V14, pe0214107, DOI 10.1371/journal.pone.0214107
  30. Han SA, 2014, TISSUE ENG PT A, V20, P2680, DOI [10.1089/ten.tea.2013.0656, 10.1089/ten.TEA.2013.0656]
  31. Hansson GK, 2006, ANNU REV PATHOL-MECH, V1, P297, DOI 10.1146/annurev.pathol.1.110304.100100
  32. Harrell CR, 2019, BIOMED PHARMACOTHER, V109, P2318, DOI 10.1016/j.biopha.2018.11.099
  33. Heldens GTH, 2012, TISSUE ENG PT A, V18, P45, DOI [10.1089/ten.TEA.2011.0083, 10.1089/ten.tea.2011.0083]
  34. Hickery MS, 2003, J BIOL CHEM, V278, P53063, DOI 10.1074/jbc.M209632200
  35. Inoki K, 2002, NAT CELL BIOL, V4, P648, DOI 10.1038/ncb839
  36. James MJ, 1998, LIPIDS, V33, P1115, DOI 10.1007/s11745-998-0313-8
  37. Jones RG, 2017, IMMUNITY, V46, P730, DOI 10.1016/j.immuni.2017.04.028
  38. Krausgruber T, 2011, NAT IMMUNOL, V12, P231, DOI 10.1038/ni.1990
  39. Kruger JP, 2012, J ORTHOP SURG RES, V7, DOI 10.1186/1749-799X-7-10
  40. Kubosch EJ, 2018, CURR STEM CELL RES T, V13, P174, DOI 10.2174/1574888X12666171002111026
  41. Labinsky H, 2020, ARTHRITIS RHEUMATOL, V72, P598, DOI 10.1002/art.41161
  42. Lacey DC, 2012, J IMMUNOL, V188, P5752, DOI 10.4049/jimmunol.1103426
  43. Lepage SIM, 2019, TISSUE ENG PART B-RE, V25, P114, DOI [10.1089/ten.teb.2018.0122, 10.1089/ten.TEB.2018.0122]
  44. Leyendecker A, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02056
  45. Madsen DH, 2013, J CELL BIOL, V202, P951, DOI 10.1083/jcb.201301081
  46. Manferdini C, 2017, OSTEOARTHR CARTILAGE, V25, P1161, DOI 10.1016/j.joca.2017.01.011
  47. Manferdini C, 2016, ARTHRITIS RES THER, V18, DOI 10.1186/s13075-016-0983-4
  48. Mantovani A, 2013, J PATHOL, V229, P176, DOI 10.1002/path.4133
  49. Martinez-Pomares L, 2006, EUR J IMMUNOL, V36, P1074, DOI 10.1002/eji.200535685
  50. Mills CD, 2000, J IMMUNOL, V164, P6166, DOI 10.4049/jimmunol.164.12.6166
  51. Murray PJ, 2014, IMMUNITY, V41, P14, DOI 10.1016/j.immuni.2014.06.008
  52. Niemeyer P, 2014, INT ORTHOP, V38, P2065, DOI 10.1007/s00264-014-2368-0
  53. O'Brien K, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18040774
  54. Ochi M, 2004, ARTIF ORGANS, V28, P28, DOI 10.1111/j.1525-1594.2004.07317.x
  55. Oliviero F, 2012, CLIN CHIM ACTA, V413, P303, DOI 10.1016/j.cca.2011.10.019
  56. Pap T, 2015, NAT REV RHEUMATOL, V11, P606, DOI 10.1038/nrrheum.2015.95
  57. Park YB, 2017, STEM CELL TRANSL MED, V6, P613, DOI 10.5966/sctm.2016-0157
  58. Perera JR, 2012, ANN ROY COLL SURG, V94, P381, DOI 10.1308/003588412X13171221592573
  59. Platanitis E, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02542
  60. Prockop DJ, 2009, MOL THER, V17, P939, DOI 10.1038/mt.2009.62
  61. Raes G, 2005, J IMMUNOL, V174, P6561, DOI 10.4049/jimmunol.174.11.6561
  62. Rios FJ, 2013, MEDIAT INFLAMM, V2013, DOI 10.1155/2013/198193
  63. Rutgers M, 2013, TISSUE ENG PT A, V19, P59, DOI [10.1089/ten.tea.2011.0416, 10.1089/ten.TEA.2011.0416]
  64. Samuelson EM, 2012, AM J SPORT MED, V40, P1252, DOI 10.1177/0363546512441586
  65. Schelbergen RF, 2014, OSTEOARTHR CARTILAGE, V22, P1158, DOI 10.1016/j.joca.2014.05.022
  66. Seifert O, 2012, J INFLAMM-LOND, V9, DOI 10.1186/1476-9255-9-43
  67. Shapouri-Moghaddam A, 2018, J CELL PHYSIOL, V233, P6425, DOI 10.1002/jcp.26429
  68. Shen J, 2014, J AM ACAD ORTHOP SUR, V22, P467, DOI 10.5435/JAAOS-22-07-467
  69. Shimomura K, 2015, CARTILAGE, V6, p13S, DOI 10.1177/1947603515571002
  70. Shimomura K, 2010, BIOMATERIALS, V31, P8004, DOI 10.1016/j.biomaterials.2010.07.017
  71. Showery JE, 2016, J ARTHROPLASTY, V31, P2108, DOI 10.1016/j.arth.2016.03.026
  72. STEINBERG D, 1989, NEW ENGL J MED, V320, P915
  73. Tardito S, 2019, AUTOIMMUN REV, V18, DOI 10.1016/j.autrev.2019.102397
  74. Tarique AA, 2015, AM J RESP CELL MOL, V53, P676, DOI 10.1165/rcmb.2015-0012OC
  75. Tu JJ, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01146
  76. Tuan RS, 2013, J AM ACAD ORTHOP SUR, V21, P303, DOI 10.5435/JAAOS-21-05-303
  77. Waterman RS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010088
  78. Wood MJ, 2019, JCI INSIGHT, V4, DOI 10.1172/jci.insight.125325
  79. Ylostalo JH, 2012, STEM CELLS, V30, P2283, DOI 10.1002/stem.1191
  80. Zhang HY, 2018, ANN RHEUM DIS, V77, P1524, DOI 10.1136/annrheumdis-2018-213450
  81. Zhu LN, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5696
  82. Zhuo Q, 2012, NAT REV RHEUMATOL, V8, P729, DOI 10.1038/nrrheum.2012.135