Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy

Carregando...
Imagem de Miniatura
Citações na Scopus
158
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
TOEPFER, Christopher N.
GARFINKEL, Amanda C.
WAKIMOTO, Hiroko
REPETTI, Giuliana
ALAMO, Lorenzo
SHARMA, Arun
AGARWAL, Radhika
EWOLDT, Jourdan F.
CLOONAN, Paige
Citação
CIRCULATION, v.141, n.10, p.828-842, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. Methods: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. Results: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. Conclusions: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM.
Palavras-chave
cardiomyopathy, hypertrophic, cardiovascular physiological phenomena, myosins, sarcomeres
Referências
  1. Alamo L, 2017, ELIFE, V6, DOI 10.7554/eLife.24634
  2. BARRY WH, 1993, CIRCULATION, V87, P1806, DOI 10.1161/01.CIR.87.6.1806
  3. Bloemink M, 2014, J BIOL CHEM, V289, P5158, DOI 10.1074/jbc.M113.511204
  4. Chopra A, 2018, DEV CELL, V44, P87, DOI 10.1016/j.devcel.2017.12.012
  5. Chung JH, 2016, FRONT PHYSIOL, V7, DOI [10.3389/fphys.2016.00562, 10.3339/fphys.2016.00562]
  6. Crilley JG, 2003, J AM COLL CARDIOL, V41, P1776, DOI 10.1016/S0735-1097(02)03009-7
  7. Curtin NA, 2018, NATURE, V563, P393, DOI 10.1038/s41586-018-0602-4
  8. de Tombe PP, 2010, J MOL CELL CARDIOL, V48, P851, DOI 10.1016/j.yjmcc.2009.12.017
  9. GeisterferLowrance AAT, 1996, SCIENCE, V272, P731, DOI 10.1126/science.272.5262.731
  10. Gorski PA, 2015, CELL METAB, V21, P183, DOI 10.1016/j.cmet.2015.01.005
  11. Hamdani Nazha, 2017, Biophys Rev, V9, P225, DOI 10.1007/s12551-017-0263-9
  12. Hinson JT, 2015, SCIENCE, V349, P982, DOI 10.1126/science.aaa5458
  13. Ho CY, 2018, CIRCULATION, V138, P1387, DOI 10.1161/CIRCULATIONAHA.117.033200
  14. Ho CY, 2002, CIRCULATION, V105, P2992, DOI 10.1161/01.CIR.0000019070.70491.6D
  15. Hooijman P, 2011, BIOPHYS J, V100, P1969, DOI 10.1016/j.bpj.2011.02.061
  16. Ingwall JS, 2002, ATP HEART
  17. Kawana M, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1601959
  18. Kensler RW, 2017, P NATL ACAD SCI USA, V114, pE1355, DOI 10.1073/pnas.1614020114
  19. Layland J, 2005, CARDIOVASC RES, V66, P12, DOI 10.1016/j.cardiores.2004.12.022
  20. Lee KY, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9054
  21. Lee KH, 2018, P NATL ACAD SCI USA, V115, pE1991, DOI 10.1073/pnas.1715247115
  22. Lowey S, 2018, P NATL ACAD SCI USA, V115, P11238, DOI 10.1073/pnas.1802967115
  23. MacCannell ADV, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.174508
  24. MacIntyre C, 2016, CIRCULATION, V133, P1901, DOI 10.1161/CIRCULATIONAHA.115.015085
  25. Mathers KE, 2017, J COMP PHYSIOL B, V187, P227, DOI 10.1007/s00360-016-1022-0
  26. McNamara JW, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180064
  27. McNamara JW, 2016, J MOL CELL CARDIOL, V94, P65, DOI 10.1016/j.yjmcc.2016.03.009
  28. Moore JR, 2012, CIRC RES, V111, P375, DOI 10.1161/CIRCRESAHA.110.223842
  29. MORANO I, 1992, BASIC RES CARDIOL, V87, P129
  30. Mosqueira D, 2018, EUR HEART J, V39, P3879, DOI 10.1093/eurheartj/ehy249
  31. Nag S, 2017, NAT STRUCT MOL BIOL, V24, P525, DOI 10.1038/nsmb.3408
  32. Nag S, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500511
  33. Neubauer S, 2007, NEW ENGL J MED, V356, P1140, DOI 10.1056/NEJMra063052
  34. Ritterhoff J, 2017, CARDIOVASC RES, V113, P411, DOI 10.1093/cvr/cvx017
  35. Rohde JA, 2018, P NATL ACAD SCI USA, V115, pE7486, DOI 10.1073/pnas.1720342115
  36. Sadayappan S, 2005, CIRC RES, V97, P1156, DOI 10.1161/01.RES.0000190605.79013.4d
  37. Schiaffino S, 2011, PHYSIOL REV, V91, P1447, DOI 10.1152/physrev.00031.2010
  38. Sequeira V, 2013, CIRC RES, V112, P1491, DOI 10.1161/CIRCRESAHA.111.300436
  39. Sharma Arun, 2018, Curr Protoc Hum Genet, V96, DOI 10.1002/cphg.53
  40. Sharma Arun, 2018, Curr Protoc Hum Genet, V96, DOI 10.1002/cphg.52
  41. Shen WQ, 1999, CIRCULATION, V100, P2113, DOI 10.1161/01.CIR.100.20.2113
  42. Sommese RF, 2013, P NATL ACAD SCI USA, V110, P12607, DOI 10.1073/pnas.1309493110
  43. Spudich JA, 2014, BIOPHYS J, V106, P1236, DOI 10.1016/j.bpj.2014.02.011
  44. Teekakirikul P, 2010, J CLIN INVEST, V120, P3520, DOI 10.1172/JCI42028
  45. Toepfer CN, 2019, CIRC RES, V124, P1172, DOI 10.1161/CIRCRESAHA.118.314505
  46. Toepfer CN, 2019, SCI TRANSL MED, V11, DOI 10.1126/scitranslmed.aat1199
  47. Toepfer CN, 2016, J PHYSIOL-LONDON, V594, P5237, DOI 10.1113/JP272441
  48. Valkovic L, 2019, J CARDIOVASC MAGN R, V21, DOI 10.1186/s12968-019-0529-4
  49. van der Velden J, 2018, CARDIOVASC RES, V114, P1273, DOI 10.1093/cvr/cvy147
  50. Vogt M, 2014, J APPL PHYSIOL, V116, P1446, DOI 10.1152/japplphysiol.00146.2013