Hypertrophic Cardiomyopathy With Left Ventricular Systolic Dysfunction Insights From the SHaRe Registry

Carregando...
Imagem de Miniatura
Citações na Scopus
107
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
MARSTRAND, Peter
HAN, Larry
DAY, Sharlene M.
OLIVOTTO, Iacopo
ASHLEY, Euan A.
MICHELS, Michelle
WITTEKIND, Samuel G.
HELMS, Adam
SABERI, Sara
Citação
CIRCULATION, v.141, n.17, p.1371-1383, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The term ""end stage"" has been used to describe hypertrophic cardiomyopathy (HCM) with left ventricular systolic dysfunction (LVSD), defined as occurring when left ventricular ejection fraction is <50%. The prognosis of HCM-LVSD has reportedly been poor, but because of its relative rarity, the natural history remains incompletely characterized. Methods: Data from 11 high-volume HCM specialty centers making up the international SHaRe Registry (Sarcomeric Human Cardiomyopathy Registry) were used to describe the natural history of patients with HCM-LVSD. Cox proportional hazards models were used to identify predictors of prognosis and incident development. Results: From a cohort of 6793 patients with HCM, 553 (8%) met the criteria for HCM-LVSD. Overall, 75% of patients with HCM-LVSD experienced clinically relevant events, and 35% met the composite outcome (all-cause death [n=128], cardiac transplantation [n=55], or left ventricular assist device implantation [n=9]). After recognition of HCM-LVSD, the median time to composite outcome was 8.4 years. However, there was substantial individual variation in natural history. Significant predictors of the composite outcome included the presence of multiple pathogenic/likely pathogenic sarcomeric variants (hazard ratio [HR], 5.6 [95% CI, 2.3-13.5]), atrial fibrillation (HR, 2.6 [95% CI, 1.7-3.5]), and left ventricular ejection fraction <35% (HR, 2.0 [95% CI, 1.3-2.8]). The incidence of new HCM-LVSD was approximate to 7.5% over 15 years. Significant predictors of developing incident HCM-LVSD included greater left ventricular cavity size (HR, 1.1 [95% CI, 1.0-1.3] and wall thickness (HR, 1.3 [95% CI, 1.1-1.4]), left ventricular ejection fraction of 50% to 60% (HR, 1.8 [95% CI, 1.2, 2.8]-2.8 [95% CI, 1.8-4.2]) at baseline evaluation, the presence of late gadolinium enhancement on cardiac magnetic resonance imaging (HR, 2.3 [95% CI, 1.0-4.9]), and the presence of a pathogenic/likely pathogenic sarcomeric variant, particularly in thin filament genes (HR, 1.5 [95% CI, 1.0-2.1] and 2.5 [95% CI, 1.2-5.1], respectively). Conclusions: HCM-LVSD affects approximate to 8% of patients with HCM. Although the natural history of HCM-LVSD was variable, 75% of patients experienced adverse events, including 35% experiencing a death equivalent an estimated median time of 8.4 years after developing systolic dysfunction. In addition to clinical features, genetic substrate appears to play a role in both prognosis (multiple sarcomeric variants) and the risk for incident development of HCM-LVSD (thin filament variants).
Palavras-chave
cardiomyopathy, hypertrophic, genetics, heart failure, prognosis, ventricular dysfunction
Referências
  1. Alfares AA, 2015, GENET MED, V17, P880, DOI [10.1038/gim.2014.205, 10.1038/gim.2015.16]
  2. Biagini E, 2005, J AM COLL CARDIOL, V46, P1543, DOI 10.1016/j.jacc.2005.04.062
  3. Biagini E, 2014, AM J CARDIOL, V114, P769, DOI 10.1016/j.amjcard.2014.05.065
  4. Elliott PM, 2014, EUR HEART J, V35, P2733, DOI 10.1093/eurheartj/ehu284
  5. Fernandez A, 2011, AM J CARDIOL, V108, P548, DOI 10.1016/j.amjcard.2011.03.083
  6. Galati G, 2016, CIRC-HEART FAIL, V9, DOI 10.1161/CIRCHEARTFAILURE.116.003090
  7. Gersh BJ, 2011, CIRCULATION, V124, P2761, DOI 10.1161/CIR.0b013e318223e230
  8. Harris KM, 2006, CIRCULATION, V114, P216, DOI 10.1161/CIRCULATIONAHA.105.583500
  9. Ho CY, 2018, CIRCULATION, V138, P1387, DOI 10.1161/CIRCULATIONAHA.117.033200
  10. Meghji Z, 2019, JAMA CARDIOL, V4, P237, DOI 10.1001/jamacardio.2019.0084
  11. Neubauer S, 2019, J AM COLL CARDIOL, V74, P2333, DOI 10.1016/j.jacc.2019.08.1057
  12. Nguyen A, 2019, ANN THORAC SURG, V108, P723, DOI 10.1016/j.athoracsur.2019.03.026
  13. Olivotto I, 2010, AM J CARDIOL, V106, P261, DOI 10.1016/j.amjcard.2010.03.020
  14. Parbhudayal RY, 2019, INT J CARDIOVAS IMAG, V35, P1089, DOI 10.1007/s10554-019-01563-3
  15. Pasqualucci D, 2015, CIRC-HEART FAIL, V8, P1014, DOI 10.1161/CIRCHEARTFAILURE.114.001843
  16. Peduzzi P, 1995, J CLIN EPIDEMIOL, V48, P1503, DOI 10.1016/0895-4356(95)00048-8
  17. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  18. Semsarian C, 2015, J AM COLL CARDIOL, V65, P1249, DOI 10.1016/j.jacc.2015.01.019
  19. SPIRITO P, 1987, AM J CARDIOL, V60, P123, DOI 10.1016/0002-9149(87)90998-2
  20. Thaman R, 2005, HEART, V91, P920, DOI 10.1136/hrt.2003.031161
  21. TURINA J, 1986, EUR HEART J, V7, P685, DOI 10.1093/oxfordjournals.eurheartj.a062123
  22. Woo A, 2005, CIRCULATION, V111, P2033, DOI 10.1161/01.CIR.0000162460.36735.71