Beneficial effects of IL-4 and IL-6 on rat neonatal target cardiac cells

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Citação
SCIENTIFIC REPORTS, v.10, n.1, article ID 12350, 12p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The nature of the early post-natal immune response in rodents appears to influence cardiac regeneration even though the underlying molecules remain poorly understood. Consistent with this idea, we show now significant changes in the expression of immune and cell movement gene pathways in heart samples from 1- and 7-day-old rats with ventricle resection. We then tested whether conditioned media from adult M2 anti-inflammatory macrophages target neonatal cardiac cells to a pro-regenerative like phenotype compared to the M1 pro-inflammatory macrophages. We found that M2 compared to M1 macrophage-conditioned media upregulates neonatal cardiomyocyte proliferation, suppresses myofibroblast-induced differentiation and stimulates endothelial cell tube formation. Using a cytokine array, we selected four candidate cytokine molecules uniquely expressed in M2 macrophage-conditioned media and showed that two of them (IL-4 and IL-6) induce endothelial cell proliferation whilst IL-4 promotes proliferation in neonatal cardiomyocytes and prevents myofibroblast-induced collagen type I secretion. Altogether, we provided evidence that adult M2 macrophage-conditioned media displays a paracrine beneficial pro-regenerative response in target cardiac cells and that IL-4 and IL-6 recapitulate, at least in part, these pleiotropic effects. Further characterization of macrophage immune phenotypes and their secreted molecules may give rise to novel therapeutic approaches for post-natal cardiac repair.
Palavras-chave
Referências
  1. Ali H, 2016, TOXICOL RES-UK, V5, P1688, DOI 10.1039/c6tx00165c
  2. ANDERS S, 2010, GENOME BIOL, V11, DOI 10.1186/GB-2010-11-10-R106
  3. Aurora AB, 2014, J CLIN INVEST, V124, P1382, DOI 10.1172/JCI72181
  4. Ben-Mordechai T, 2013, J AM COLL CARDIOL, V62, P1890, DOI 10.1016/j.jacc.2013.07.057
  5. Bujak M, 2009, CIRC RES, V105, P973, DOI 10.1161/CIRCRESAHA.109.199471
  6. Dewald O, 2004, AM J PATHOL, V164, P665, DOI 10.1016/S0002-9440(10)63154-9
  7. Dobaczewski M, 2010, AM J PATHOL, V176, P2177, DOI 10.2353/ajpath.2010.090759
  8. Durinck S, 2009, NAT PROTOC, V4, P1184, DOI 10.1038/nprot.2009.97
  9. Feng J, 2019, CELL COMMUN SIGNAL, V17, DOI 10.1186/s12964-019-0376-9
  10. Gentleman RC, 2004, GENOME BIOL, V5, DOI 10.1186/gb-2004-5-10-r80
  11. Godwin JW, 2013, P NATL ACAD SCI USA, V110, P9415, DOI 10.1073/pnas.1300290110
  12. Goodman S, 2019, SCI REP, V9, P1
  13. Gopinathan G, 2015, CANCER RES, V75, P3098, DOI 10.1158/0008-5472.CAN-15-1227
  14. Honjoh K, 2019, FRONT CELL NEUROSCI, V13, DOI 10.3389/fncel.2019.00525
  15. Horckmans M, 2017, EUR HEART J, V38, P187, DOI 10.1093/eurheartj/ehw002
  16. Huang SP, 2004, J BIOMED SCI, V11, P517, DOI 10.1159/000077902
  17. Jensen L, 2018, J CELL PHYSIOL, V233, P5420, DOI 10.1002/jcp.26380
  18. Jetten N, 2014, ANGIOGENESIS, V17, P109, DOI 10.1007/s10456-013-9381-6
  19. Kyritsis N, 2012, SCIENCE, V338, P1353, DOI 10.1126/science.1228773
  20. Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]
  21. Lavine KJ, 2014, P NATL ACAD SCI USA, V111, P16029, DOI 10.1073/pnas.1406508111
  22. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  23. Linton PJ, 2014, IMMUNOL LETT, V162, P290, DOI 10.1016/j.imlet.2014.06.017
  24. Liu YQ, 1999, J IMMUNOL, V162, P3639
  25. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  26. Lu LS, 2002, P NATL ACAD SCI USA, V99, P3007, DOI 10.1073/pnas.052715399
  27. Mudunuri U, 2009, BIOINFORMATICS, V25, P555, DOI 10.1093/bioinformatics/btn654
  28. Nahrendorf M, 2007, J EXP MED, V204, P3037, DOI 10.1084/jem.20070885
  29. Peranteau WH, 2008, J INVEST DERMATOL, V128, P1852, DOI 10.1038/sj.jid.5701232
  30. Pinto AR, 2016, CIRC RES, V118, P400, DOI 10.1161/CIRCRESAHA.115.307778
  31. Porrello ER, 2011, SCIENCE, V331, P1078, DOI 10.1126/science.1200708
  32. Ren GF, 2002, J HISTOCHEM CYTOCHEM, V50, P71, DOI 10.1177/002215540205000108
  33. Ridge JP, 1996, SCIENCE, V271, P1723, DOI 10.1126/science.271.5256.1723
  34. Sakaguchi S, 2014, INT J BIOCHEM CELL B, V54, P272, DOI 10.1016/j.biocel.2014.05.032
  35. Sattler S, 2016, BBA-MOL CELL RES, V1863, P1813, DOI 10.1016/j.bbamcr.2016.01.011
  36. Shintani Y, 2017, SCI REP, V7, P1
  37. Simoes FC, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14263-2
  38. Smart N, 2006, CARDIOVASC RES, V69, P164, DOI 10.1016/j.cardiores.2005.08.017
  39. Thery Clotilde, 2011, F1000 Biol Rep, V3, P15, DOI 10.3410/B3-15
  40. Troidl C, 2009, J CELL MOL MED, V13, P3485, DOI 10.1111/j.1582-4934.2009.00707.x
  41. Vendrame CMV, 2015, MEDIAT INFLAMM, V2014, P1
  42. Wodsedalek DJ, 2019, AM J PHYSIOL-HEART C, V316, pH24, DOI 10.1152/ajpheart.00521.2018
  43. Zogbi C, 2014, PHYSL REP, V2, P1