Gut Dysbiosis and Increased Intestinal Permeability Drive microRNAs, NLRP-3 Inflammasome and Liver Fibrosis in a Nutritional Model of Non-Alcoholic Steatohepatitis in Adult Male Sprague Dawley Rats

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
DOVE MEDICAL PRESS LTD
Autores
LONGO, Larisse
FERRARI, Jessica Tonin
RAMPELOTTO, Pabulo Henrique
DELLAVIA, Gustavo Hirata
PASQUALOTTO, Amanda
CERSKI, Carlos Thadeu Schmidt
SILVEIRA, Themis Reverbel da
URIBE-CRUZ, Carolina
ALVARES-DA-SILVA, Mario Reis
Citação
CLINICAL AND EXPERIMENTAL GASTROENTEROLOGY, v.13, p.351-368, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background/Aim: The interactions between the gut and liver have been described in the progression of non-alcoholic steatohepatitis (NASH). The aim of this study was to develop an experimental nutritional model of NASH simulating metabolic changes occurring in humans. Materials and Methods: Adult male Sprague Dawley rats were randomized into two groups: controls (standard diet) and intervention (high-fat and choline-deficient diet) for 16 weeks, each experimental group with 10 animals. Biochemical analysis, hepatic lipid content, microRNAs, inflammatory, gut permeability markers and gut microbiota were measured. Results: Animals in the intervention group showed significantly higher delta Lee index (p=0.017), abdominal circumference (p<0.001), abdominal adipose tissue (p<0.001) and fresh liver weight (p<0.001), as well as higher serum levels of alanine aminotransferase (p=0.010), glucose (p=0.013), total cholesterol (p=0.033), LDL cholesterol (p=0.011), and triglycerides (p=0.011), and lower HDL cholesterol (p=0.006) compared to the control group. Higher TLR4 (p=0.041), TLR9 (p=0.033), MyD88 (p=0.001), Casp1 (p<0.001), NLPR3 (p=0.019), liver inflammation index interleukin (IL)-1 beta/IL10 (p<0.001), IL6/IL10 (p=0.002) and TNFa/IL10 (p=0.001) were observed in the intervention group, and also lower permeability markers Ocln (p=0.003) and F11r (p=0.041). Gene expression of miR-122 increased (p=0.041) and miR-145 (p=0.010) decreased in the intervention group. Liver steatosis, inflammation and fibrosis, along with collagen fiber deposition increment (p<0.001), were seen in the intervention group. Regarding gut microbiota, Bray-Curtis dissimilarity index and number of operational taxonomic units were significantly different (p<0.001) between the groups. Composition of the gut microbiota showed a significant correlation with histopathological score of NAFLD (r=0.694) and index IL-1 beta/IL-10 (r=0.522). Conclusion: This experimental model mimicking human NASH demonstrated gut and liver interaction, with gut microbiota and intestinal permeability changes occurring in parallel with systemic and liver inflammation, miRNAs regulation and liver tissue damage.
Palavras-chave
fatty liver disease models, fibrosis, gut microbiota, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis
Referências
  1. Abenavoli L, 2018, PHARMACEUTICALS-BASE, V11, DOI 10.3390/ph11040104
  2. Acharya C, 2017, GASTROENTEROL CLIN N, V46, P155, DOI 10.1016/j.gtc.2016.09.013
  3. Aranha MM, 2008, EUR J GASTROEN HEPAT, V20, P519, DOI 10.1097/MEG.0b013e3282f4710a
  4. Asgharpour A, 2016, J HEPATOL, V65, P579, DOI 10.1016/j.jhep.2016.05.005
  5. Aydos LR, 2019, NUTRIENTS, V11, DOI 10.3390/nu11123067
  6. Bischoff SC, 2014, BMC GASTROENTEROL, V14, DOI 10.1186/s12876-014-0189-7
  7. Boursier J, 2016, HEPATOLOGY, V63, P764, DOI 10.1002/hep.28356
  8. BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  9. Buzzetti E, 2016, METABOLISM, V65, P1038, DOI 10.1016/j.metabol.2015.12.012
  10. Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303
  11. Cengiz M, 2015, J GASTROEN HEPATOL, V30, P1190, DOI 10.1111/jgh.12924
  12. Chen DS, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8111324
  13. Cortez-Pinto Helena, 2016, GE Port J Gastroenterol, V23, P132, DOI 10.1016/j.jpge.2016.01.004
  14. Day CP, 1998, GASTROENTEROLOGY, V114, P842, DOI 10.1016/S0016-5085(98)70599-2
  15. de Lima VM, 2008, J HEPATOL, V49, P1055, DOI 10.1016/j.jhep.2008.07.024
  16. de Moura RF, 2009, BRIT J NUTR, V101, P1178, DOI 10.1017/S0007114508066774
  17. Demir M, 2020, J GASTROEN HEPATOL, DOI 10.1111/jgh.15071
  18. Duarte SMB, 2018, NUTR METAB CARDIOVAS, V28, P369, DOI 10.1016/j.numecd.2017.10.014
  19. Estes C, 2018, J HEPATOL, V69, P896, DOI 10.1016/j.jhep.2018.05.036
  20. Estes C, 2018, HEPATOLOGY, V67, P123, DOI 10.1002/hep.29466
  21. Ferreira DMS, 2014, MOL CELL BIOL, V34, P1100, DOI 10.1128/MCB.00420-13
  22. Gomez-Lechon MJ, 2007, CHEM-BIOL INTERACT, V165, P106, DOI 10.1016/j.cbi.2006.11.004
  23. Gomez-Zorita S, 2019, NUTRIENTS, V11, DOI 10.3390/nu11092156
  24. Henkel J, 2017, MOL MED, V23, P70, DOI 10.2119/molmed.2016.00203
  25. Hills RD, 2019, NUTRIENTS, V11, DOI 10.3390/nu11071613
  26. Honda T, 2017, METABOLISM, V69, P177, DOI 10.1016/j.metabol.2016.12.013
  27. Houghton D, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17040447
  28. Ikawa-Yoshida A, 2017, INT J EXP PATHOL, V98, P221, DOI 10.1111/iep.12240
  29. Irene P, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11744-6
  30. Ishioka M, 2017, DIGEST DIS SCI, V62, P396, DOI 10.1007/s10620-016-4393-x
  31. Jain MR, 2018, LIVER INT, V38, P1084, DOI 10.1111/liv.13634
  32. Jegatheesan P, 2016, BRIT J NUTR, V116, P191, DOI 10.1017/S0007114516001793
  33. Jensen T, 2018, J HEPATOL, V68, P1063, DOI 10.1016/j.jhep.2018.01.019
  34. Kishida N, 2016, BMC GASTROENTEROL, V16, DOI 10.1186/s12876-016-0477-5
  35. Lau JKC, 2017, J PATHOL, V241, P36, DOI 10.1002/path.4829
  36. Leung C, 2016, NAT REV GASTRO HEPAT, V13, P412, DOI 10.1038/nrgastro.2016.85
  37. Liang W, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115922
  38. Liu JP, 2016, WORLD J GASTROENTERO, V22, P7353, DOI 10.3748/wjg.v22.i32.7353
  39. Machado MV, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127991
  40. Matsumoto M, 2013, INT J EXP PATHOL, V94, P93, DOI 10.1111/iep.12008
  41. Mouries J, 2019, J HEPATOL, V71, P1216, DOI 10.1016/j.jhep.2019.08.005
  42. Oseini AM, 2018, HEPATOL INT, V12, P6, DOI 10.1007/s12072-017-9838-6
  43. Pierantonelli I, 2019, TRANSPLANTATION, V103, pe1, DOI 10.1097/TP.0000000000002480
  44. Pirola CJ, 2015, GUT, V64, P800, DOI 10.1136/gutjnl-2014-306996
  45. Quast C, 2013, NUCLEIC ACIDS RES, V41, pD590, DOI 10.1093/nar/gks1219
  46. Raso GM, 2014, J NUTR BIOCHEM, V25, P81, DOI 10.1016/j.jnutbio.2013.09.006
  47. Ratziu V, 2016, GASTROENTEROLOGY, V150, P1147, DOI 10.1053/j.gastro.2016.01.038
  48. Raubenheimer PJ, 2006, DIABETES, V55, P2015, DOI 10.2337/db06-0097
  49. Rognes T, 2016, PEERJ, V4, DOI 10.7717/peerj.2584
  50. Safari Z, 2019, CELL MOL LIFE SCI, V76, P1541, DOI 10.1007/s00018-019-03011-w
  51. Sanches SCL, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/574832
  52. Schloss PD, 2009, APPL ENVIRON MICROB, V75, P7537, DOI 10.1128/AEM.01541-09
  53. Schnabl B, 2014, GASTROENTEROLOGY, V146, P1513, DOI 10.1053/j.gastro.2014.01.020
  54. Segata N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-6-r60
  55. Sui YH, 2016, WORLD J GASTROENTERO, V22, P2533, DOI 10.3748/wjg.v22.i8.2533
  56. Sun WW, 2020, LIFE SCI, V245, DOI 10.1016/j.lfs.2020.117356
  57. Takahashi Y, 2012, WORLD J GASTROENTERO, V18, P2300, DOI 10.3748/wjg.v18.i19.2300
  58. Tsuchida T, 2018, J HEPATOL, V69, P385, DOI 10.1016/j.jhep.2018.03.011
  59. Van Herck MA, 2017, NUTRIENTS, V9, DOI 10.3390/nu9101072
  60. Vetelainen R, 2007, J GASTROEN HEPATOL, V22, P1526, DOI 10.1111/j.1440-1746.2006.04701.x
  61. Wen HT, 2011, NAT IMMUNOL, V12, P408, DOI 10.1038/ni.2022
  62. Wong RJ, 2015, GASTROENTEROLOGY, V148, P547, DOI 10.1053/j.gastro.2014.11.039
  63. Wree A, 2014, J MOL MED, V92, P1069, DOI 10.1007/s00109-014-1170-1
  64. Wu GJ, 2012, J ONCOL, V2012, DOI 10.1155/2012/853797
  65. Yang JF, 2018, FRONT PHARMACOL, V8, DOI 10.3389/fphar.2017.00980
  66. Younossi ZM, 2019, J HEPATOL, V70, P531, DOI 10.1016/j.jhep.2018.10.033
  67. Zhu LX, 2013, HEPATOLOGY, V57, P601, DOI 10.1002/hep.26093