HOXB7 mRNA is overexpressed in pancreatic ductal adenocarcinomas and its knockdown induces cell cycle arrest and apoptosis

Carregando...
Imagem de Miniatura
Citações na Scopus
33
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Citação
BMC CANCER, v.13, article ID 451, 12p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Human homeobox genes encode nuclear proteins that act as transcription factors involved in the control of differentiation and proliferation. Currently, the role of these genes in development and tumor progression has been extensively studied. Recently, increased expression of HOXB7 homeobox gene (HOXB7) in pancreatic ductal adenocarcinomas (PDAC) was shown to correlate with an invasive phenotype, lymph node metastasis and worse survival outcomes, but no influence on cell proliferation or viability was detected. In the present study, the effects arising from the knockdown of HOXB7 in PDAC cell lines was investigated. Methods: Real time quantitative PCR (qRT-PCR) (Taqman) was employed to assess HOXB7 mRNA expression in 29 PDAC, 6 metastatic tissues, 24 peritumoral tissues and two PDAC cell lines. siRNA was used to knockdown HOXB7 mRNA in the cell lines and its consequences on apoptosis rate and cell proliferation were measured by flow cytometry and MTT assay respectively. Results: Overexpression of HOXB7 mRNA was observed in the tumoral tissues and in the cell lines MIA PaCa-2 and Capan-1. HOXB7 knockdown elicited (1) an increase in the expression of the pro-apoptotic proteins BAX and BAD in both cell lines; (2) a decrease in the expression of the anti-apoptotic protein BCL-2 and in cyclin D1 and an increase in the number of apoptotic cells in the MIA PaCa-2 cell line; (3) accumulation of cell in sub-G1 phase in both cell lines; (4) the modulation of several biological processes, especially in MIA PaCa-2, such as proteasomal ubiquit-independent catabolic process and cell cycle. Conclusion: The present study confirms the overexpression of HOXB7 mRNA expression in PDAC and demonstrates that decreasing its protein level by siRNA could significantly increase apoptosis and modulate several biological processes. HOXB7 might be a promising target for future therapies.
Palavras-chave
Pancreatic ductal adenocarcinoma, Homeobox, HOXB7, siRNA, Gene expression
Referências
  1. Abe A, 2013, HUM PATHOL, V44, P199, DOI 10.1016/j.humpath.2012.05.005
  2. Andersen CL, 2004, CANCER RES, V64, P5245, DOI 10.1158/0008-5472.CAN-04-0496
  3. Armstrong SA, 2002, NAT GENET, V30, P41, DOI 10.1038/ng765
  4. BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
  5. Bitu CC, 2012, HISTOPATHOLOGY, V60, P662, DOI 10.1111/j.1365-2559.2011.04102.x
  6. Care A, 1996, MOL CELL BIOL, V16, P4842
  7. Care A, 2001, CANCER RES, V61, P6532
  8. Care A, 1998, ONCOGENE, V16, P3285, DOI 10.1038/sj.onc.1201875
  9. Cillo C, 1999, EXP CELL RES, V248, P1, DOI 10.1006/excr.1999.4451
  10. Deer EL, 2010, PANCREAS, V39, P425, DOI 10.1097/MPA.0b013e3181c15963
  11. DUBOULE D, 1992, BIOESSAYS, V14, P375, DOI 10.1002/bies.950140606
  12. Ferreira AK, 2012, ANTICANCER RES, V32, P95
  13. Gray Sophie, 2011, JOP, V12, P216
  14. Grier DG, 2005, J PATHOL, V205, P154, DOI 10.1002/path.1710
  15. Hayashida T, 2010, P NATL ACAD SCI USA, V107, P1100, DOI 10.1073/pnas.0912710107
  16. Herreros-Villanueva M, 2012, WORLD J GASTROENTERO, V18, P1565, DOI 10.3748/wjg.v18.i14.1565
  17. Hong JH, 2010, J GYNECOL ONCOL, V21, P29, DOI 10.3802/jgo.2010.21.1.29
  18. Hyman E, 2002, CANCER RES, V62, P6240
  19. Jemal A, 2010, CA-CANCER J CLIN, V60, P277, DOI [10.3322/caac.20073, 10.1002/caac.20073]
  20. KYRIAZIS AP, 1982, AM J PATHOL, V106, P250
  21. Liao WT, 2011, CLIN CANCER RES, V17, P3569, DOI 10.1158/1078-0432.CCR-10-2533
  22. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  23. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  24. Mark M, 1997, PEDIATR RES, V42, P421, DOI 10.1203/00006450-199710000-00001
  25. Kovochich AN, 2013, CANCER-AM CANCER SOC, V119, P529, DOI 10.1002/cncr.27725
  26. Nunes Fabio Daumas, 2003, Pesqui Odontol Bras, V17, P94, DOI 10.1590/S1517-74912003000100018
  27. Paez D, 2012, GASTROENTEROL CLIN N, V41, P189, DOI 10.1016/j.gtc.2011.12.004
  28. Pineault N, 2004, MOL CELL BIOL, V24, P1907, DOI 10.1128/MCB.24.5.1907-1917.2004
  29. Rejiba S, 2007, CANCER SCI, V98, P1128, DOI 10.1111/j.1349-7006.2007.00506.x
  30. Strathdee G, 2007, CLIN CANCER RES, V13, P5048, DOI 10.1158/1078-0432.CCR-07-0919
  31. Van Roy N, 2002, GENOME BIOL, V3
  32. Vencio RZN, 2005, DNA RES, V12, P211, DOI 10.1093/dnares/dsi007
  33. Wang H, 2011, J BIOL CHEM, V286, P16832, DOI 10.1074/jbc.M110.213975
  34. Wang PW, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010202
  35. Wellik DM, 2009, CURR TOP DEV BIOL, V88, P257, DOI 10.1016/S0070-2153(09)88009-5
  36. Yu C, 2008, J CELL MOL MED, V12, P2334, DOI 10.1111/j.1582-4934.2008.00257.x
  37. Yunis AA, 1977, INT J CANCER, V19, P218
  38. Zhang B, 2005, NUCLEIC ACIDS RES, V33, pW741, DOI 10.1093/nar/gki475