Aerobic Exercise Training Exerts Beneficial Effects Upon Oxidative Metabolism and Non-Enzymatic Antioxidant Defense in the Liver of Leptin Deficiency Mice

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
LIMA, Talitta Ricarlly Lopes de Arruda
FERNANDES, Mariana Pinheiro
COGLIATI, Bruno
LAGRANHA, Claudia Jacques
Citação
FRONTIERS IN ENDOCRINOLOGY, v.11, article ID 588502, 9p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of liver disease, which is associated with several etiological factors, including stress and dysfunction in oxidative metabolism. However, studies showed that aerobic exercise training (AET) can combat the oxidative stress (OS) and improves mitochondrial functionality in the NAFLD. To test the hypothesis that AET improves oxidative metabolism and antioxidant defense in the liver of ob/ob mice. Male ob/ob mice with eight weeks old were separated into two groups: the sedentary group (S), n=7, and the trained group (T), n=7. The T mice were submitted to an 8-week protocol of AET at 60% of the maximum velocity achieved in the running capacity test. Before AET, no difference was observed in running test between the groups (S=10.4 +/- 0.7 min vs. T= 13 +/- 0.47 min). However, after AET, the running capacity was increased in the T group (12.8 +/- 0.87 min) compared to the S group (7.2 +/- 0.63 min). In skeletal muscle, the T group (26.91 +/- 1.12 U/mg of protein) showed higher citrate synthase activity compared with the S group (19.28 +/- 0.88 U/mg of protein) (p =0.006). In the analysis of BW evolution, significant reductions were seen in the T group as of the fourth week when compared to the S group. In addition, food intake was not significant different between the groups. Significant increases were observed in the activity of enzymes citrate synthase (p=0.004) and beta-HAD (p=0.01) as well as in PGC-1 alpha gene expression (p=0.002) in the liver of T group. The levels of TBARs and carbonyls, as well as SOD, CAT and GST were not different between the groups. However, in the nonenzymatic antioxidant system, we found that the T group had higher sulfhydryl (p = 0.02), GSH (p=0.001) and GSH/GSSG (p=0.02) activity. In conclusion, the AET improved body weight evolution and the aerobic capacity, increased the response of oxidative metabolism markers in the liver such as PGC-1 alpha gene expression and citrate synthase and beta-HAD enzyme activities in ob/ob mice. In addition, AET improved the non-enzymatic antioxidant defense and did not change the enzymatic defense.
Palavras-chave
liver disease, oxidative metabolism, antioxidant defense, physical exercise, leptin deficiency
Referências
  1. AEBI H, 1984, METHOD ENZYMOL, V105, P121
  2. Al-Dayyat HM, 2018, DIABETES METAB SYND, V12, P569, DOI 10.1016/j.dsx.2018.03.016
  3. ALP PR, 1976, BIOCHEM J, V154, P689, DOI 10.1042/bj1540689
  4. Begriche K, 2006, MITOCHONDRION, V6, P1, DOI 10.1016/j.mito.2005.10.004
  5. Buege J A, 1978, Methods Enzymol, V52, P302
  6. Couto N, 2016, FREE RADICAL BIO MED, V95, P27, DOI 10.1016/j.freeradbiomed.2016.02.028
  7. De Souza CT, 2010, J PHYSIOL-LONDON, V588, P2239, DOI 10.1113/jphysiol.2009.183996
  8. ELLMAN GL, 1959, ARCH BIOCHEM BIOPHYS, V82, P70, DOI 10.1016/0003-9861(59)90090-6
  9. Erlich AT, 2016, INTEGR MED RES, V5, P187, DOI 10.1016/j.imr.2016.05.003
  10. Evangelista FS, 2015, INT J CLIN EXP MED, V8, P10911
  11. Ferreira JCB, 2007, CLIN EXP PHARMACOL P, V34, P760, DOI 10.1111/j.1440-1681.2007.04635.x
  12. Georgoulis M, 2015, NUTR RES, V35, P41, DOI 10.1016/j.nutres.2014.11.004
  13. Goncalves IO, 2014, MITOCHONDRION, V15, P40, DOI 10.1016/j.mito.2014.03.012
  14. Goncalves IO, 2013, EUR J CLIN INVEST, V43, P1184, DOI 10.1111/eci.12146
  15. Grattagliano I, 2008, J NUTR BIOCHEM, V19, P491, DOI 10.1016/j.jnutbio.2007.06.011
  16. HABIG WH, 1974, J BIOL CHEM, V249, P7130
  17. Halliwell B, 2015, FREE RADICALS BIOL M, V5th ed
  18. HISSIN PJ, 1976, ANAL BIOCHEM, V74, P214, DOI 10.1016/0003-2697(76)90326-2
  19. Ito M, 2010, AM J PHYSIOL-HEART C, V298, pH1426, DOI 10.1152/ajpheart.00284.2009
  20. Ko Jinho, 2013, J Exerc Nutrition Biochem, V17, P181, DOI 10.5717/jenb.2013.17.4.181
  21. Koves TR, 2005, J BIOL CHEM, V280, P33588, DOI 10.1074/jbc.M507621200
  22. Kudryavtseva AV, 2016, ONCOTARGET, V7, P44879, DOI 10.18632/oncotarget.9821
  23. Le Page C, 2009, EXP GERONTOL, V44, P177, DOI 10.1016/j.exger.2008.10.003
  24. LEVINE RL, 1990, METHOD ENZYMOL, V186, P464
  25. Linden MA, 2015, MED SCI SPORT EXER, V47, P556, DOI 10.1249/MSS.0000000000000430
  26. Lohr K, 2016, PHYSIOL REP, V4, DOI 10.14814/phy2.12988
  27. Loomba R, 2015, J HEPATOL, V63, P10, DOI 10.1016/j.jhep.2015.03.009
  28. Magkos F, 2010, CURR OPIN LIPIDOL, V21, P507, DOI 10.1097/MOL.0b013e32833ea912
  29. Mantena SK, 2008, FREE RADICAL BIO MED, V44, P1259, DOI 10.1016/j.freeradbiomed.2007.12.029
  30. MISRA HP, 1972, J BIOL CHEM, V247, P3170
  31. Molero JC, 2006, DIABETES, V55, P708, DOI 10.2337/diabetes.55.03.06.db05-0312
  32. Morris EM, 2017, J PHYSIOL-LONDON, V595, P4909, DOI 10.1113/JP274281
  33. Musso G, 2003, HEPATOLOGY, V37, P909, DOI 10.1053/jhep.2003.50132
  34. Nascimento L, 2014, APPL PHYSIOL NUTR ME, V39, P880, DOI 10.1139/apnm-2013-0452
  35. Perfield JW, 2013, J OBES, V2013, DOI 10.1155/2013/296537
  36. Rani V, 2016, LIFE SCI, V148, P183, DOI 10.1016/j.lfs.2016.02.002
  37. Rao Xiayu, 2013, Biostat Bioinforma Biomath, V3, P71
  38. REZNICK AZ, 1994, METHOD ENZYMOL, V233, P357
  39. Rinella ME, 2016, NAT REV GASTRO HEPAT, V13, P196, DOI 10.1038/nrgastro.2016.3
  40. Rui LY, 2014, COMPR PHYSIOL, V4, P177, DOI 10.1002/cphy.c130024
  41. SEN CK, 1994, J APPL PHYSIOL, V77, P2177
  42. SEN CK, 1995, J APPL PHYSIOL, V79, P675
  43. Shin SK, 2018, PFLUG ARCH EUR J PHY, V470, P1721, DOI 10.1007/s00424-018-2195-z
  44. Silva LLSE, 2020, CLIN EXP GASTROENTER, V13, P223, DOI 10.2147/CEG.S242393
  45. Thyfault JP, 2009, J PHYSIOL-LONDON, V587, P1805, DOI 10.1113/jphysiol.2009.169060