Low-dose chlorine exposure impairs lung function, inflammation and oxidative stress in mice

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
GENARO, Isabella Santos de
ALMEIDA, Francine Maria de
KUNZLER, Deborah De Camargo Hizume
TRIPODE, Bruna Gabryela Busoletto
KURDEJAK, Adriana
CORDEIRO, Bruna Nakamura
PANDOLPHO, Renata
BRUGGEMANN, Thayse Regina
Citação
LIFE SCIENCES, v.267, article ID 118912, 11p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aim: To explore the different consequences of acute and chronic exposure to chlorine gas (Cl-2) on the functional and histological parameters of health mice. Main methods: Firstly, male BALB/c mice were acute exposed to 3.3 or 33.3 or 70.5 mg/m(3) Cl-2. We analyzed the lung function, the inflammatory cells in the bronchoalveolar lavage, cell influx in the peribrochoalveolar space and mucus production. In a second phase, mice were chronic exposed to 70.5 mg/m(3) Cl-2. Besides the first phase analyses, we also evaluated the epithelial cells thickness, collagen deposition in the airways, immunohisto-chemistry stain for IL-1 beta, iNOS, IL-17 and ROCK-2 and the levels of IL-5, IL-13, IL-17, IL-1 beta and TNF-alpha in lung homogenate. Key findings: Acute exposure to chlorine impaired the lung function, increased the number of inflammatory cells in the BALF and in the airways, also increased the mucus production. Furthermore, when chlorine was exposed chronically, increased the airway remodeling with collagen deposition and epithelial cells thickness, positive cells for IL-1 beta, iNOS, IL-17 in the airways and in the alveolar walls and ROCK-2 in the alveolar walls, lung inflammation with increased levels of IL-5, IL-13, IL-1 beta and TNF-alpha in the lung homogenate, and also, induced the acid mucus production by the nasal epithelium. Significance: Acute and chronic exposure to low dose of chlorine gas worsens lung function, induces oxidative stress activation and mucus production and contributes to augmenting inflammation in health mice.
Palavras-chave
Sodium hypochlorite, Lung function, Lung inflammation, Pulmonary remodeling, Oxidative stress
Referências
  1. Abraham E, 2003, CRIT CARE MED, V31, pS195, DOI 10.1097/01.CCM.0000057843.47705.E8
  2. Agabiti N, 2001, OCCUP ENVIRON MED, V58, P399, DOI 10.1136/oem.58.6.399
  3. Antosova M, 2017, PHYSIOL RES, V66, pS159, DOI 10.33549/physiolres.933673
  4. Aujla SJ, 2011, BBA-GEN SUBJECTS, V1810, P1066, DOI 10.1016/j.bbagen.2011.02.002
  5. Bessac BF, 2008, J CLIN INVEST, V118, P1899, DOI 10.1172/JCI34192
  6. Boulet LP, 1997, CHEST, V112, P45, DOI 10.1378/chest.112.1.45
  7. Brooks SM, 2011, IMMUNOL ALLERGY CLIN, V31, P747, DOI 10.1016/j.iac.2011.07.002
  8. Camargo LD, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01835
  9. Carlisle M, 2016, ANN NY ACAD SCI, V1374, P159, DOI 10.1111/nyas.13091
  10. Cosmi L, 2017, CURR ALLERGY ASTHM R, V17, DOI 10.1007/s11882-017-0735-9
  11. de Genaro IS, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-30851-6
  12. De Soete D., 1972, NEUTRON ACTIVATION A
  13. Dellaca RL, 2008, RESP RES, V9, DOI 10.1186/1465-9921-9-51
  14. Demnati R, 1998, EUR RESPIR J, V11, P922, DOI 10.1183/09031936.98.11040922
  15. dos Santos TM, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01183
  16. Dumas O, 2014, AM J IND MED, V57, P303, DOI 10.1002/ajim.22244
  17. Evans RB, 2005, LUNG, V183, P151, DOI 10.1007/s00408-004-2530-3
  18. Eyerich K, 2017, EUR J IMMUNOL, V47, P607, DOI 10.1002/eji.201646723
  19. Fazen LE, 2020, CURR OPIN PULM MED, V26, P142, DOI 10.1097/MCP.0000000000000658
  20. Folletti I, 2014, J ASTHMA, V51, P18, DOI 10.3109/02770903.2013.833217
  21. GINA, 2019, NHLBI WHO WORKSH
  22. Grommes J, 2011, MOL MED, V17, P293, DOI 10.2119/molmed.2010.00138
  23. Hamacher J, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01644
  24. Hammerschmidt S, 2004, BBA-MOL BASIS DIS, V1690, P258, DOI 10.1016/j.bbadis.2004.07.003
  25. Hammerschmidt S, 2007, RESP MED, V101, P1205, DOI 10.1016/j.rmed.2006.11.003
  26. Hawkins CL, 2003, AMINO ACIDS, V25, P259, DOI 10.1007/s00726-003-0016-x
  27. Herbert R.A., 1999, PATHOLOGY MOUSE REFE, P259
  28. Hizume DC, 2012, RESP PHYSIOL NEUROBI, V181, P167, DOI 10.1016/j.resp.2012.03.005
  29. Honavar J, 2011, AM J RESP CELL MOL, V45, P419, DOI 10.1165/rcmb.2010-0151OC
  30. Hox V, 2014, ALLERGY, V69, P282, DOI 10.1111/all.12347
  31. Hox V, 2013, AM J RESP CRIT CARE, V187, P486, DOI 10.1164/rccm.201208-1358OC
  32. Jonasson S, 2013, TOXICOL APPL PHARM, V271, P168, DOI 10.1016/j.taap.2013.04.037
  33. JONES R, 1978, LAB INVEST, V39, P41
  34. Jones R, 2010, WEST J EMERG MED, V11, P151
  35. Kim JB, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106417
  36. Labrecque M, 2012, CURR OPIN ALLERGY CL, V12, P140, DOI 10.1097/ACI.0b013e32835143b8
  37. Lemiere C., 2019, REACTIVE AIRWAYS DYS
  38. Malo JL, 2009, AM J RESP CRIT CARE, V179, P923, DOI 10.1164/rccm.200810-1550OC
  39. Martin JG, 2003, AM J RESP CRIT CARE, V168, P568, DOI 10.1164/rccm.200201-021OC
  40. Martinez-Gonzalez I, 2015, TRENDS IMMUNOL, V36, P189, DOI 10.1016/j.it.2015.01.005
  41. Matulonga B, 2016, RESP MED, V117, P264, DOI 10.1016/j.rmed.2016.06.019
  42. McGovern TK, 2015, AM J RESP CELL MOL, V52, P513, DOI 10.1165/rcmb.2013-0430OC
  43. Morris JB, 2005, TOXICOL SCI, V83, P380, DOI 10.1093/toxsci/kfi038
  44. Mukherjee M, 2014, WORLD ALLERGY ORGAN, V7, DOI 10.1186/1939-4551-7-32
  45. OSHA, 2018, OCC SAF HLTH ADM
  46. Pinkerton JW, 2017, MOL IMMUNOL, V86, P44, DOI 10.1016/j.molimm.2017.01.014
  47. Pires-Neto RC, 2006, ENVIRON RES, V101, P356, DOI 10.1016/j.envres.2005.12.018
  48. Quirce S, 2010, J INVEST ALLERG CLIN, V20, P542
  49. RighettI RF, 2014, RESP PHYSIOL NEUROBI, V192, P134, DOI 10.1016/j.resp.2013.12.012
  50. Righetti RF, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01021
  51. Schuijs MJ, 2013, CURR OPIN PHARMACOL, V13, P351, DOI 10.1016/j.coph.2013.03.013
  52. Shim JS, 2020, ALLERGY, V75, P381, DOI 10.1111/all.14017
  53. Siracusa A, 2013, ALLERGY, V68, P1532, DOI 10.1111/all.12279
  54. Song WF, 2011, AM J RESP CELL MOL, V45, P88, DOI 10.1165/rcmb.2010-0226OC
  55. Tuck SA, 2008, RESP RES, V9, DOI 10.1186/1465-9921-9-61
  56. Vandenplas O, 2014, ALLERGY, V69, P1141, DOI 10.1111/all.12448
  57. Vincent MJ, 2017, REGUL TOXICOL PHARM, V90, P231, DOI 10.1016/j.yrtph.2017.09.013
  58. WEIBEL ER, 1966, J CELL BIOL, V30, P23, DOI 10.1083/jcb.30.1.23
  59. White Carl W, 2010, Proc Am Thorac Soc, V7, P257, DOI 10.1513/pats.201001-008SM
  60. Winder C, 2001, ENVIRON RES, V85, P105, DOI 10.1006/enrs.2000.4110
  61. Woods CG, 2009, TOXICOL APPL PHARM, V238, P27, DOI 10.1016/j.taap.2009.04.007
  62. Wynn TA, 2003, ANNU REV IMMUNOL, V21, P425, DOI 10.1146/annurev.immunol.21.120601.141142
  63. Yadav Amit K, 2010, Proc Am Thorac Soc, V7, P278, DOI 10.1513/pats.201001-009SM
  64. Yang Guang, 2010, J Cardiovasc Dis Res, V1, P29, DOI 10.4103/0975-3583.59983
  65. Yildirim C, 2004, INHAL TOXICOL, V16, P911, DOI 10.1080/08958370490520749