The role of PNPLA3 and TM6SF2 polymorphisms on liver fibrosis and metabolic abnormalities in Brazilian patients with chronic hepatitis C

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Citação
BMC GASTROENTEROLOGY, v.21, n.1, article ID 81, 10p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundDespite the growing body of knowledge about TM6SF2 and PNPLA3 polymorphisms in non-alcoholic fatty liver disease, their influence in the spectrum of HCV liver disease is not yet fully defined. Besides that, admixed populations, such as Brazilians, were not included in most of the studies.MethodsThis cross-sectional study enrolled 365 treatment-naive patients with HCV and 134 healthy individuals. TM6SF2 (rs58542926 c.499C>T) and PNPLA3 (rs738409 c.444C>G) polymorphisms were evaluated regarding their association with clinical and laboratory data, histological liver steatosis and fibrosis, and with components of the metabolic syndrome.ResultsIn HCV subjects, the frequencies of TM6SF2 CC and CT+TT were 89% and 11%, while PNPLA3 frequencies of CC and CG+GG were 51.4% and 48.6%. In the univariate logistic regression analysis, the TM6SF2 CT+TT genotype in HCV was associated with significant liver fibrosis (p=0.047; OR 1.953; 95% CI 1.009-3.788). In comparison to the CT+TT genotype, the TM6SF2 CC genotype in HCV was associated with older age (p=0.002), higher frequency of arterial hypertension (p=0.032), obesity (p=0.030), metabolic syndrome (p=0.014) and lower total cholesterol levels (p=0.036). The PNPLA3 GG subjects had lower body mass index than CG/ CC individuals (p=0.047). None of the polymorphisms, or their combinations, was independently associated with hepatic steatosis or fibrosis. On the other hand, older age, lower serum levels of total cholesterol, and higher serum levels of alanine aminotransferase and alkaline phosphatase were associated with liver fibrosis in the multivariate logistic regression analysis.ConclusionIn this evaluation of an admixed HCV population, neither TM6SF2 nor PNPLA3 polymorphisms were independently associated with hepatic steatosis or fibrosis. Other factors seem more influential than these specific polymorphisms in isolation. More studies are warranted to clarify the role of the TM6SF2 and PNPLA3 polymorphisms in Brazilians with HCV.
Palavras-chave
Hepatitis C virus, Hepatitis virus, Genetic variation
Referências
  1. Basit H, 2020, STATPEARLS
  2. Basyte-Bacevice V, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20061277
  3. BEDOSSA P, 1994, HEPATOLOGY, V20, P15
  4. Benzaken AS, 2019, BRAZ J INFECT DIS, V23, P182, DOI 10.1016/j.bjid.2019.04.010
  5. BOTSTEIN D, 1980, AM J HUM GENET, V32, P314
  6. Boyer A, 2018, GASTROENTEROLOGY, V155, P1923, DOI 10.1053/j.gastro.2018.08.027
  7. Bruschi FV, 2017, HEPATIC MED-EVID RES, V9, P55, DOI 10.2147/HMER.S125718
  8. Cai T, 2011, J HEPATOL, V55, P529, DOI 10.1016/j.jhep.2010.12.020
  9. Cardoso AC, 2018, J VIRAL HEPATITIS, V25, P1244, DOI 10.1111/jvh.12930
  10. Coppola N, 2015, LIVER INT, V35, P1959, DOI 10.1111/liv.12781
  11. Crisan D, 2019, J PHYSIOL PHARMACOL, V70, P585, DOI 10.26402/jpp.2019.4.09
  12. Dongiovanni P, 2015, HEPATOLOGY, V61, P506, DOI 10.1002/hep.27490
  13. Dunn W, 2019, BMJ OPEN GASTROENTER, V6, DOI 10.1136/bmjgast-2018-000241
  14. Eslam M, 2016, HEPATOLOGY, V64, P34, DOI 10.1002/hep.28475
  15. Fan JH, 2016, GUT LIVER, V10, P456, DOI 10.5009/gnl15261
  16. Grundy SM, 2004, ARTERIOSCL THROM VAS, V24, pE13, DOI 10.1161/01.ATV.0000111245.75752.C6
  17. Holmen OL, 2014, NAT GENET, V46, P345, DOI 10.1038/ng.2926
  18. Huang CM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182204
  19. Khatun M, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8101249
  20. Kozlitina J, 2014, NAT GENET, V46, P352, DOI 10.1038/ng.2901
  21. Lisboa QC, 2020, WORLD J HEPATOL, V12, P792, DOI 10.4254/wjh.v12.i10.792
  22. Liu ZT, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09548-9
  23. Machado CM, 2019, NUTR METAB CARDIOVAS, V29, P965, DOI 10.1016/j.numecd.2019.06.002
  24. Magri MC, 2020, DIAGN MICR INFEC DIS, V97, DOI 10.1016/j.diagmicrobio.2020.115025
  25. Mahdessian H, 2014, P NATL ACAD SCI USA, V111, P8913, DOI 10.1073/pnas.1323785111
  26. Manchiero C, 2017, BMC INFECT DIS, V17, DOI 10.1186/s12879-017-2887-6
  27. Mazo DF, 2019, ANN HEPATOL, V18, P466, DOI 10.1016/j.aohep.2018.10.004
  28. Milano M, 2015, HEPATOLOGY, V62, P111, DOI 10.1002/hep.27811
  29. Ministerio da Saude do Brasil. Secretaria de Vigilancia em Saude, 2020, B EP HEP VIR 2020
  30. Nakamura M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081312
  31. Petta S, 2015, ALIMENT PHARM THER, V41, P939, DOI 10.1111/apt.13169
  32. Pirola CJ, 2015, HEPATOLOGY, V62, P1742, DOI 10.1002/hep.28142
  33. Rembeck K, 2015, PHARMACOGENOMICS, V16, P1179, DOI [10.2217/PGS.15.65, 10.2217/pgs.15.65]
  34. Roh Yoon-Seok, 2015, Gastroenterology, V148, P252, DOI 10.1053/j.gastro.2014.11.014
  35. Romeo S, 2008, NAT GENET, V40, P1461, DOI 10.1038/ng.257
  36. Rotman Y, 2010, HEPATOLOGY, V52, P894, DOI 10.1002/hep.23759
  37. Salameh H, 2016, WORLD J HEPATOL, V8, P1584, DOI 10.4254/wjh.v8.i35.1584
  38. Severson TJ, 2016, WORLD J GASTROENTERO, V22, P6742, DOI 10.3748/wjg.v22.i29.6742
  39. Spearman CW, 2019, LANCET, V394, P1451, DOI 10.1016/S0140-6736(19)32320-7
  40. Stevenson Heather L, 2016, Trop Dis Travel Med Vaccines, V2, P21, DOI 10.1186/s40794-016-0038-5
  41. Trepo E, 2011, HEPATOLOGY, V54, P60, DOI 10.1002/hep.24350
  42. Valenti L, 2011, HEPATOLOGY, V53, P791, DOI 10.1002/hep.24123
  43. Vasques ACJ, 2008, ARQ BRAS ENDOCRINOL, V52, P32, DOI 10.1590/S0004-27302008000100006
  44. Westbrook RH, 2014, J HEPATOL, V61, pS58, DOI 10.1016/j.jhep.2014.07.012
  45. Wong Robert J, 2016, Gastroenterol Hepatol (N Y), V12, P293
  46. Yang J, 2019, INT J CANCER, V144, P533, DOI 10.1002/ijc.31910